Contents

Contents	1
Chapter 1 Product Acceptance & Model Description	4
1.1 Product Acceptance	4
1.1.1 Items for Acceptance (Wires Included)	4
1.1.2 Nameplate of Servo Driver	4
1.1.3 Nameplate of Servo Motor	5
1.2 Component Names	5
1.2.1 Component Names of CD2S Servo Driver	5
1.2.2 Component Names of Servo Motor	6
1.3 Model Description of Servo Motors and Drivers	6
1.3.1 Servo Drivers	6
1.3.3 Power,Brake and Encoder cable of Motors	8
Chapter 2 Precautions and Installation Requirements	9
2.1 Precautions	9
2.2 Environmental Conditions	9
2.3 Mounting Direction & Spacing	9
2.3.1 Precautions	9
2.3.2 Servo Driver Installation	10
Chapter 3 Interfaces and Wiring of CD2S Driver	13
3.1 Interfaces of CD2S Driver	13
3.1.1 Interfaces	13
3.1.2 Wiring Diagram	15
3.1.3 X1 interface of CD2S Driver	16
3.1.4 Power Interface X3 of CD2S Driver (CD432S/CD622S X3 and X7)	17
3.1.5 X5 and X6 Interfaces of CD2S Driver	18
3.1.5.1 X5 Interface	18
3.1.5.2 X6 Interface	18
Chapter 4 Digital Operation Panel	19
4.1 Introduction	19
4.2 Operation on Digital Operation Panel	21
Example 4-1: Set the denominator of electronic gear ratio to 10000 with number sy	/stem
switching	21
Example 4-2: Set the speed to 1000 RPM/-1000 RPM with separate regulation of bits	22
Chapter 5 Motor Selection, Trial Operation and Parameter List	24
5.1 Driver and motor configuration	24
5.2 Trial Operation	27
5.2.1 Objective	27
5.2.2 Precautions	27
5.2.3 Operating Steps	28
5.2.4 Diagram of Trial Operation	28
5.3 EASY USE	28
5.4 Description of Parameters	34
Chapter 6 Operation on Input/Output Ports	46

6.1 Digital Input Signals	. 46
6.1.1 Polarity Control on Digital Input Signals	. 46
Example 6-1: Polarity Setting for Digital Input Signal DIN1	. 47
6.1.2 Simulation of Digital Input Signals	. 47
Example 6-2: Simulate digital input DIN1	. 48
6.1.3 Status Display of Digital Input Signals	. 48
6.1.4 Addresses & Functions of Digital Input Signals	. 48
6.1.5 Multiple electronic gear ratio switch function and multiple gain switch function	. 50
Example 6-3: Driver Enable Setting	. 51
Example 6-4: Disabling Position Positive/Negative Limit Settings	. 51
Example 6-5: Operation Mode Control on Drivers	. 52
6.1.6 Wiring of Digital Input Port	. 52
6.2 Digital Output Signals	. 53
6.2.1 Polarity Control on Digital Output Signals	. 53
6.2.2 Simulation of Digital Output Signals	. 53
6.2.3 Status Display of Digital Output Signals	. 54
6.2.4 Addresses and Functions of Digital Output Signals	. 54
Example 6-6: "Ready" settings	. 55
6.2.5 Wiring of Digital Output Port	. 55
Chapter 7 Mode Operation	. 58
7.1 Pulse Control Mode ("-4" Mode)	. 58
7.1.1 Wiring in Pulse Control Mode	. 58
7.1.2 Parameters for Pulse Control Mode	. 59
7.1.3 Examples of Pulse Control Mode	. 62
Example 7-1: Pulse control mode "-4" – enable the driver through external digital input	. 63
Example 7-2 Pulse control mode "-4" – enable the driver automatically after driver power on	ı 64
7.2 Speed Mode ("-3" or "3" Mode)	. 65
7.2.1 Wiring in Analog – Speed Mode	. 66
7.2.2 Parameters for Analog – Speed Mode	. 66
7.2.3 Analog Signal Processing	. 67
7.2.4 Examples of Analog – Speed Mode	. 67
7.3 Torque Mode ("4" Mode)	. 68
7.3.1 Wiring in Analog – Torque Mode	. 68
7.3.2 Parameters for Analog – Torque Mode	. 68
7.3.3 Analog Signal Processing	. 69
7.3.4 Examples of Analog – Torque Mode	. 70
7.4 Internal Multi-position Control Modes ("1" Mode)	. 72
Example7-3: Internal Multi-position control mode	. 73
7.5 Internal Multi-speed Control Modes ("-3" or "3" Mode)	. 75
Example 7-4: Internal Multi-speed control	. 76
7.7 Homing Mode ("6" Mode)	. 77
Example 7-5: Using method 7 for homing	. 84
Chapter 8 Control Performance	. 90
8.1 Driver Performance Tuning	. 90
8.1.1 Manual Adjustment	. 90
8.2 Oscillation Inhibition	. 94

8.3 Auto reverse	
8.4 Debugging example	
8.4.1 Oscilloscope	
8.4.2 Procedure for Parameter Adjustment	
Chapter 9 Communication	
9.1 Transport Protocol	
9.2 Data Protocol	
9.2.1 Download(from Host to Slave)	
9.2.2 Upload(From Slave to Host)	
Chapter 10 Troubleshooting	
10.1 Alarm Messages	
Table 10-1 Fault codes	
10.2 Alarm Causes & Troubleshooting	
Chapter11 Appendix	110
Appendix 1: Selection Table for Brake Resistor	110
Appendix 2:Selection Table for Fuse	111

Chapter 1 Product Acceptance & Model Description

1.1 Product Acceptance

1.1.1 Items for Acceptance (Wires Included)

	det deeptanee			
Item for Acceptance	Remark			
Whether the model of a delivered CD2S	Check the nameplate of a servo motor and			
series servo system is consistent with the	that of a servo driver			
specified model				
Whether the accessories included in the	Check the packing list			
packing list are complete				
Whether any breakage occurs	Check the external appearance completely			
	for any losses that are caused by			
	transportation			
Whether any screws are loose	Check for loose screws with a screwdriver			
Whether the motor wiring is correct	Purchase motor accessory packages if no			
	wires are purchased			

Table 1-1 Product acceptance

1.1.2 Nameplate of Servo Driver

Fig. 1-1 Nameplate of a servo driver

1.1.3 Nameplate of Servo Motor

Fig. 1-2 Nameplate of a servo motor

1.2 Component Names

1.2.1 Component Names of CD2S Servo Driver

	X3 U, V, W, PE: Motor power connector	
X7 R, S, T: AC power supply input (AC220V) RB+, RB-: External braking resistor DC+, DC-: DC bus interface (DC310V±20%)	X7 R, S, T: AC power supply input (AC380V) RB+, RB-: External braking resistor DC+, DC-: DC bus interface (DC540V±20%)	
	X3 U, V, W, PE: Motor power connector X7 R, S, T: AC power supply input (AC220V) RB+, RB-: External braking resistor DC+, DC-: DC bus interface (DC310V±20%)	X3 U, V, W, PE: Motor power connector X7 R, S, T: AC power supply input (AC220V) RB+, RB-: External braking resistor DC+, DC-: DC bus interface (DC310V±20%) X3 U, V, W, PE: Motor power connector X7 R, S, T: AC power supply input (AC380V) RB+, RB-: External braking resistor DC+, DC-: DC bus interface (DC540V±20%)

Fig. 1-3 Component Names of CD2S Servo Driver

1.2.2 Component Names of Servo Motor

Fig. 1-4 Component names of a servo motor (brakes excluded)

1.3 Model Description of Servo Motors and Drivers

1.3.1 Servo Drivers

1.3.2 Servo Motors

SMH 605-0040-30AAK-3LKH

			1 25		
SMH	SMH Series	┣━━┛╴╷╷╷╷╷╷╷╷	-	н	Direct cable connector
SMS	SMS Series		1	M	HFO18 series standard connector
SMC	SMC Series		13	N	(Towards the shaft)
SME	SME Series]		0	HFO18 series standard connector
60	Flange size 60×60mm		- 34	_	HEO21+HEO18
s	Small inertia	┣━━━━━┛	8	P	Power HF021 connector, Encoder HF018 connector
D	Medium inertia			С	YL series standard connector
н	High inertia			М	2×M17 series Intercontec connector
0040	Rated power 40×10(W)	┣━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━		U	Communication encoder connector
30	Rated speed 30×100(rpm)	↓		К	History code
۵	2500PPR incremental encoder	i		D	DC70V
R	SMT37 Resolver	f *-	-	L	AC220V
Ĵ	20 bit single-turn encoder	1		н	AC380V
K	16 bit multi-turn absolute encoder	10		F	50 Pole pairs
N	Mechanical absolute encoder	1		3	3 Pole pairs
E	2500PPR incremental wire saving encode	1		4	4 Pole pairs
м	Magnetoelectric encoder			K.	With kayway
A	Without brake	¥		A	Without keyway
B	With brake	1	1.00	2021	

1.3.3 Power, Brake and Encoder cable of Motors

Chapter 2 Precautions and Installation Requirements

A Kinco CD2S series servo driver is installed on a base. If a driver is not installed properly, some faults may occur. To avoid this, install the driver by abiding by the following precautions.

2.1 Precautions

- 1. Tightly fasten the screws that fix the motor;
- 2. Make sure to tightly fasten all fixed points when fixing the driver;
- 3. Do not tighten the cables between the driver and the motor/encoder;
- 4. Use a coupling shaft or expansion sleeve to ensure that both the motor shaft and equipment shaft are properly centered;
- 5. Do not mix conductive materials (such as screws and metal filings) or combustible materials (such as oil) into the servo driver;
- 6. Avoid the servo driver and servo motor from dropping or striking because they are precision equipment;
- 7. For safety, do not use any damaged servo driver or any driver with damaged parts.

2.2 Environmental Conditions

Environment	Condition
Temperature	Operating temperature: 0°C - 40°C (ice free)
	Storage temperature: - 10°C - 70°C (ice free)
Humidity	Operating humidity: below 90% PH (non-condensing)
	Storage humidity: below 90% PH (non-condensing)
Air	Indoor (No direct sunlight), no corrosive gas or combustible gas
	No oil vapor or dust
Height	Below 1000 m above the sea level
Vibration	5.9 m/s2

Table 2-1 Environmental conditions

2.3 Mounting Direction & Spacing

2.3.1 Precautions

1. To prevent possible faults, install a servo driver in a proper direction;

2. To prevent possible faults, ensure that the space between a servo driver and the inner wall of the control cabinet as well as that between the servo driver and the neighboring driver are the same as specified space.

2.3.2 Servo Driver Installation

1. Installing a servo driver:

Fig. 2-1 Installing a servo driver

2. Installing multiple servo drivers:

Ensure that there is enough space between a servo driver and the inner wall of a control cabinet. Additionally, install cooling fans at the upper part of the servo driver. To prevent localized overheating of the environmental temperature on the servo driver, you need to keep an even temperature in the control cabinet.

Fig. 2-2 Installing multiple servo drivers

3. Other Cases

Install the servo driver vertically on a wall.

Take fully into account heat dissipation when using any heating components (such as braking resistors) so that the servo driver is not affected.

Fig. 2-3 Installation direction

Chapter 3 Interfaces and Wiring of CD2S Driver

3.1 Interfaces of CD2S Driver

3.1.1 Interfaces

Interface	Driver	Symbol	Function			
		СОМІ	Common terminal of digital in	nputs		
		DIN1~DIN7	Digital inputs. Valid signal:12.5V \sim 24V.Invalid signal:<5V			
			OUT1+	Digital output 1+		
		OUT1-	Digital output 1-			
		OUT2+	Digital output 2+			
		OUT2-	Digital output 2-			
		OUT3	Digital output 3			
		OUT4	Digital output 4			
		СОМО	Common terminal of digital outputs			
	CD412S CD422S CD432S CD622S	GND	Ground signal			
		ENCO-Z				
X1		ENCO-/Z	- Motor encoder output interface			
		ENCO-B		22		
		ENCO-/B		ce		
		ENCO-A				
		ENCO-/A				
		AIN1	Analog signal input 1. Input i	mpedance: 200 K		
		GNDA	Ground signal of analog			
		AIN2	Analog signal input 2. Input i	mpedance: 200 K		
		GNDA	Ground signal of analog			
		PUL+	Pulse or positive pulse interface (+)			
		PUL-	Pulse or positive pulse interface (-)	Input voltage range: 3V~24V		
		DIR+	Direction or negative pulse interface (+)			
DIR- Direction or ne		Direction or negative pulse				

Table 3-1 Interfaces of CD412S/CD422S/CD432S/CD622S

			interface (-)		
		24VS/GNDS	Logic power supply:"18VDC~30VDC 1A"		
X2		24VB/GNDB	Power supply for brake "18VDC \sim 30VDC 0.5A" (CD622S 2A)		
		BR+/BR-	Brake interface		
		U/V/W/PE	Motor cable interface		
Y2	CD412S	L/N	Main power supply (Single-	phase AC220V)	
~3	CD422S	RB+/RB-	Braking resistor interface		
X5	CD412S	RS232	RS232 interface		
	CD422S				
X6	CD432S		Encoder cable interface		
	CD622S				
	CD432S	R/S/T	Main power supply (CD43 AC220V, CD622S: 3-phase	B2S: Single phase or 3-phase e AC380V)	
X7	X7 CD622S RB+/RB- Braking resistor interface DC+/DC- DC bus power supply(Cannot use together with R/S/I				

3.1.2 Wiring Diagram

Note: For part of driving interface, please refer to figure 3-4.

Fig.3-1 Wiring diagram of CD2S driver

3.1.3 X1 interface of CD2S Driver

Fig.3-2 X1 interface

Fig.3-3 Wiring diagram of X1 interface

3.1.4 Power Interface X3 of CD2S Driver (CD432S/CD622S X3 and

X7)

CD622S(AC380V)

Fig.3-4 Power interface of CD2S driver

3.1.5 X5 and X6 Interfaces of CD2S Driver

3.1.5.1 X5 Interface

_		_	Interface	Pin	Signal	Description	Function
	0			No.			
	Č	5		1	NC	N/A	
9	0	Ŭ		2	ТΧ	To transmit data	
8	0	4		3	RX	To receive data	
Ĭ	0	3	X5	4	NC	N/A	RS232
7	0	2	(9-pin female	5	GND	Ground of signal	communication
6	0	Ī	connector)	6	NC	N/A	interface
		1		7	NC	N/A	
	0			8	NC	N/A	
				9	NC	N/A	

3.1.5.2 X6 Interface

1	0	8
15	0	7
14	ິ	
13	0	6
12	0	5
12	ం	4
11	0	
10	ంౖ	3
9	0	2
-(0	1
9	°°/⊚	J

Interface	Pin No.	Signal	Description	Function
	1	+5V	To output 5 V voltage	
	9	GND	0 V	
	8	PTC_IN	N/A	
	2	A	To input phase-A signals	
	10	/A	of encoder	Input interface of encoder in motor
	3	В	To input phase-B signals	
X6	11	/B	of encoder	
connector)	4	Z	To input phase-Z signals of encoder	
,	12	/Z		
	5	U	To input phase-U	
	13	/U	signals of encoder	
	6	V	To input phase-V signals	
	14	/V	of encoder	
	7	W	To input phase-W	

_

15	/W	signals of encoder	
----	----	--------------------	--

Chapter 4 Digital Operation Panel

4.1 Introduction

A digital operation panel functions to set user parameters in a servo driver, execute instructions, or display parameters. Table 4-1 describes all display contents and functions of the digital operation panel.

	Number Number Point MODE Key
Number/ Point/Key	Function
	Indicates whether data is positive or negative. If it is on, it indicates negative; otherwise it indicates
Ū	positive.
	1. Distinguishes the current object group and the address data in this object group during
2	parameter settings.
	2. Indicates the higher 16 bits of the current 32-bit data when internal 32-bit data is displayed in

Table 4-1 Display contents and functions of a digital operation panel

	real time.			
	3. Indicates the earliest error when history records of errors (F007) are displayed.			
	1. Indicates a data display format when parameters are displayed and adjusted in real time. If it is			
3	on, it indicates the data is displayed in hexadecimal; otherwise it indicates the data is displayed			
9	in decimal.			
	2. Indicates the latest error when the history records of errors (F007) are displayed.			
	1. If it is on, it indicates that internal data is currently displayed.			
4	2. If it flickers, it indicates that the power part of the driver is in the working status.			
	1. Switches basic menus.			
MODE	2. During the adjustment of parameters, short presses the key to move the bit to be adjusted, and			
	long presses the key to return to the previous state.			
	Presses ▲ to increase set values; long presses ▲ to increase numbers promptly.			
▼	Presses ▼ to decrease set values; long presses ▼ to decrease numbers promptly.			
▼	 Presses ▼ to decrease set values; long presses ▼ to decrease numbers promptly. 1. Enters the selected menu by pressing this key. 			
▼	 Presses ▼ to decrease set values; long presses ▼ to decrease numbers promptly. 1. Enters the selected menu by pressing this key. 2. Keeps current parameters in the enabled status. 			
▼ ENTER	 Presses ▼ to decrease set values; long presses ▼ to decrease numbers promptly. 1. Enters the selected menu by pressing this key. 2. Keeps current parameters in the enabled status. 3. Confirms input parameters after parameters are set. 			
▼ ENTER	 Presses ▼ to decrease set values; long presses ▼ to decrease numbers promptly. Enters the selected menu by pressing this key. Keeps current parameters in the enabled status. Confirms input parameters after parameters are set. Long presses this key to switch to higher/lower 16 bits when internal 32-bit data is displayed in 			
▼ ENTER	 Presses ▼ to decrease set values; long presses ▼ to decrease numbers promptly. Enters the selected menu by pressing this key. Keeps current parameters in the enabled status. Confirms input parameters after parameters are set. Long presses this key to switch to higher/lower 16 bits when internal 32-bit data is displayed in real time. 			
▼ ENTER PL	 Presses ▼ to decrease set values; long presses ▼ to decrease numbers promptly. 1. Enters the selected menu by pressing this key. 2. Keeps current parameters in the enabled status. 3. Confirms input parameters after parameters are set. 4. Long presses this key to switch to higher/lower 16 bits when internal 32-bit data is displayed in real time. Activates position positive limit signals. 			
▼ ENTER PL nL	Presses ▼ to decrease set values; long presses ▼ to decrease numbers promptly. 1. Enters the selected menu by pressing this key. 2. Keeps current parameters in the enabled status. 3. Confirms input parameters after parameters are set. 4. Long presses this key to switch to higher/lower 16 bits when internal 32-bit data is displayed in real time. Activates position positive limit signals.			
▼ ENTER PL nL Pn.L	 Presses ▼ to decrease set values; long presses ▼ to decrease numbers promptly. 1. Enters the selected menu by pressing this key. 2. Keeps current parameters in the enabled status. 3. Confirms input parameters after parameters are set. 4. Long presses this key to switch to higher/lower 16 bits when internal 32-bit data is displayed in real time. Activates position positive limit signals. Activates position negative limit signals. Activates position positive/negative limit signals. 			
▼ ENTER PL nL Pn.L Overall	 Presses ▼ to decrease set values; long presses ▼ to decrease numbers promptly. 1. Enters the selected menu by pressing this key. 2. Keeps current parameters in the enabled status. 3. Confirms input parameters after parameters are set. 4. Long presses this key to switch to higher/lower 16 bits when internal 32-bit data is displayed in real time. Activates position positive limit signals. Activates position negative limit signals. Activates position positive/negative limit signals. Indicates that an error occurs on the driver, and is in the alarm state. 			
▼ ENTER PL nL Pn.L Overall Flicking	 Presses ▼ to decrease set values; long presses ▼ to decrease numbers promptly. 1. Enters the selected menu by pressing this key. 2. Keeps current parameters in the enabled status. 3. Confirms input parameters after parameters are set. 4. Long presses this key to switch to higher/lower 16 bits when internal 32-bit data is displayed in real time. Activates position positive limit signals. Activates position negative limit signals. Activates position positive/negative limit signals. Indicates that an error occurs on the driver, and is in the alarm state. 			

If the parameter adjusting display mode is featured by the decimal system:

When the units place is flickering, press \blacktriangle to add 1 to the current value; press \lor to deduct 1 from the current value. When the tens place is flickering, press \blacktriangle to add 10 to the current value; press \lor to deduct 10 from the current value. When the hundreds place is flickering, press \blacktriangle to add 100 to the current value; press \lor to deduct 10 from the current value. When the hundreds place is flickering, press \blacktriangle to add 100 to the current value; press \lor to deduct 100 from the current value. When the thousands place is flickering, press \blacktriangle to add 1000 to the current value; press \lor to deduct 1000 from the current value.

If the parameter adjusting display mode is featured by the hexadecimal system:

When the units place is flickering, press \blacktriangle to add 1 to the current value; press \lor to deduct 1 from the current value. When the tens place is flickering, press \blacktriangle to add 0X10 to the current value; press \blacktriangledown to deduct 0X10 from the current value. When the hundreds place is flickering, press \blacktriangle to add 0X100 to the current value; press \blacktriangledown to deduct 0X100 from the current value. When the thousands place is flickering, press \blacktriangle to add 0X1000 to the current value; press \blacktriangledown to deduct 0X100 from the current value. When the thousands place is flickering, press \blacktriangle to add 0X1000 to the current value; press \blacktriangledown to deduct 0X1000 from the current value.

When adjusting decimal parameters, the display mode is automatically switched to the hexadecimal system if the data is greater than 9999 or less than -9999. In this case, the 3rd decimal point from left to right is highlighted.

4.2 Operation on Digital Operation Panel

Note: If a non real-time display interface is displayed for the control panel, and no key operation occurs, the real-time display interface is automatically skipped after 20 seconds to avoid misoperation.

Example 4-1: Set the denominator of electronic gear ratio to 10000 with number system switching

1. Press MODE. The main menu is displayed. Choose F003.

- 2. Press **ENTER**. The interface for selecting addresses is displayed.
- 3. Press \blacktriangle to adjust data as **d3.35**.
- Press ENTER to display the current value d3.35. Press ENTER again to modify the value d3.35. In this case, the 1st number at the right side is flickering. Short press MODE for three times to move to the first position on the left. Then press ▲. The value is increased to 9000. In this case, the current data is decimal.
- 5. Press ▲ again. The content of numeric display changes to "271.0", and the 3rd decimal point (from left to right) flickers. In this case, the data is hexadecimal. Press ENTER to confirm the current value. The 1st decimal point on the right flickers. In this case, the denominator of the electronic gear ratio is modified to 10000.

Fig. 4-2 Number system conversion

Example 4-2: Set the speed to 1000 RPM/-1000 RPM with separate regulation of

bits

- 1. Press **MODE**. The main menu is displayed. Choose **F000**.
- 2. Press **ENTER**. The interface for selecting addresses is displayed.
- 3. Press \blacktriangle to adjust data as **d0.02**.
- 4. Press **ENTER** to display the current value d0.02. Press **ENTER** again to modify the value d0.02. In this case, the 1st number at the right side is flickering.
- Short press MODE for three times to move to the 1st position on the left. Press ▲ to modify the value to 1. Press ENTER to confirm the current value. The 1st decimal point on the right flickers. In this case, the speed is 1000 RPM.
- Press ▼ to modify the value to -1. In this case, the 1st decimal point on the left flickers, indicating that the current data is negative. Press ENTER to confirm the current value. The 1st decimal point on the right flickers. In this case, the speed is -10000 RPM.

Fig. 4-3 Separate regulation of bits

Chapter 5 Motor Selection, Trial Operation and Parameter List

5.1 Driver and motor configuration

There is no default motor type set in driver, so users need to set the motor model before using the driver. Please refer to the selection table when setting the motor model.

PC	LED				Suitable s	ervo		
enter Ré	10000000000000000000000000000000000000		CD412S	CD422S	With fan	CD432S	CD612S	CD622S
Operat	tion address: EA01	Motor model	FD412S	FD422S	CD422S-AF FD422S-AF (CF, LF)	FD432S	FD612S	FD622S
K@	404.b	Do not configure motor		12	Display FFF.F if	not enab	le	- 199 - 199
ΨO	305.7	SMC60S-0020-30E K-3LKH		\sim				
W1	315.7	SMC60S-0040-30E K-3LKH		~		89	82	24
₩2	325.7	SMC60S-0075-30E K-3LKH		~		- CR 		
ΨB	425.7	SMC130D-0100-20E K-4LKP		85	~	0 20	12 12	
ΨC	435.7	SMC130D-0150-20E K-4HKP					\swarrow	
₩D	445.7	SMC130D-0200-20E K-4HKP		1		2). 	~	82
ΨO	4F5.7	SMC130D-0150-20E K-4LKP				1	50 100	
ΨP	505.7	SMC130D-0200-20E K-4LKP	5			~	12 12	
₩Q	515.7	SMC130D-0300-30E K-4HKP						\sim
WR	525.7	SMC130D-0300-20E K-4HKP		1		82	82	~
YO	305.9	SMS60S-0020-30J K-3LKU		~		20 20	69 82	
¥1	315.9	SMS60S-0040-30J K-3LKU		~		0 20		
¥2	325.9	SMS80S-0075-30J K-3LKU		\sim				
ZO	305. A	SMS60S-0020-20K K-3LKU		\sim		8		24
Z1	315. A	SMS60S-0040-30K K-3LKU		~		- CP - 22	C) 82	
Z2	325. A	SMS80S-0075-30K K-3LKU		\sim	2 0 2 0	а СС	10 10	
ΚZ	5A4.b	SMH40S-0005-30A K-4LKH	~					
K₩	594.b	SMH40S-0010-30A K-4LKH	~			<i>Cu</i>	82	- 9)
KO	304.b	SMH60S-0020-30A K-3LK		\sim		59 89	50 82	50°
K1	314.b	SMH60S-0040-30A K-3LK		\sim		а С		
K2	324. b	SMH80S-0075-30A K-3LK		\checkmark				
KЗ	334.b	SMH80S-0100-30A K-3LK				~	81	3).
K4	344.b	SMH110D-0105-20A K-4LK				\sim	50 03	l.
	50 H 10 10 10 10 10 10 10		a 2.					
K5	354.b	SMH110D-0125-30A K-4LK				\sim		
K6	364.b	SMH110D-0126-20A K-4LK				~	26	
K7	374.b	SMH110D-0126-30A K-4HK	35	1			3	\checkmark
K8	384.b	SMH110D-0157-30A K-4HK						\sim
К9	394.b	SMH110D-0188-30A K-4HK				80 20 - 20		\sim
KB	424.b	SMH130D-0105-20A K-4HK				~	20	~
KC	434.b	SMH130D-0157-20A K-4HK		5		\checkmark	3	~
KD	444.b	SMH130D-0210-20A K-4HK						\sim
KE	454. b	SMH130D-0230-20A K-4HK				90 - 2		~
F4	344.b	855-0025-05AAK-FLFN-02		~		26	20	
F6	364.b	855-0035-05AAK-FLFN-02		~		3	3	
F8	384.b	855-0045-05AAK-FLFN-02		\sim				

1. Customers have the data file (No need to configure motor)

Use the CD-PC software to download data file to servo driver, then driver and motor can work normally. Please contact us if there is any problem after downloading. In CD-PC, click the **Extend-->Write Driver Config**. Then open the data file (For example, name.cdi), write it to driver.

Note: You should download the new version software from our website: http://www.kinco.cn/en/

R ³ KincoServo	
File Computer Driver Motor Extend View Help	
Open data file name.cdi. (The name is user-defined) Open file Start Download the data file to driver Write no pro Save parameters in driver Saue parameter no pro Restart driver Index load Index Ioad Index Ioad	export data cess cess reess reess reess reess reess reess reess reess refle game: name.cd Files of type: Files(*.cd) Comm. Status: Onen. COM1. 38400

Fig.5-1 Data file downloading

2. Customers do not have data file (They need configure motor model in servo)

Customers can configure the motor's model according to servo/motor configuration table mentioned above, then set the parameters according to the application. If the motor's model do not configure properly, the driver and motor may not work normally. You can configure motor model via keys on servo or CD-PC software.

(1) Configure Motor (Keys Operation)

Fig.5-2 Flow chart for configuring motor by key

Please configure the right motor's model before restart. If customers want to reset the motor model, they should set D4.19 to 303.0 (Press ENTER to confirm) and then d4.00 to 1(Save motor parameters), after restart the servo they can reset motor model and servo parameters according to the above chart

(2) Configure Motor (CD-PC Software Operation)

Connect the servo to PC, open the CD-PC, then Menu—Driver—Control Panel—F004, in the F004, in the F004, set the 19th operation: **Motor Num** (Please refer to the servo and motor configuration table), after that press Enter to confirm, then restart servo.

Please configure the right Motor's model before restart. If the customers want to reset the motor model, they should set D4.19 (Motor Num in F004) to 00(Press ENTER to confirm), then enter the **Initialize/Save** page, click the **Save motor parameters.** After restart the servo, they can reset the motor model and set servo parameters.

Rs Ki	ncoServo	1 1 1 1 1 1 1	-	10.00	0.0			THE TRU		• X
File	Computer	Driver Motor Extend	View	Help						
	Basic Operate								
	. 🖸 7.	Control Loop	*	<u>ч</u> п						
		I/O Port								
		Operation Mode	•			RS F004				×
		Data Dictionary					name	data	unit	
		Driver Config				6	Commu Delau	1000	mS	
		Oscilloscope				7	Motor IIt I	150.000	Ap	
		Error Control		the second second		8	Motor_IIt_Filter	76.800	S	
		Error Ulatan		-		9	Imax_Motor	16.700	Ap	
		Error History			Kince	10	L_Motor	7.600	mH	=
		Control Panel	•	F000	1	11	R_Motor	1.400	Ohm	-
		Initialize/Save		F001		12	Ke_Motor	40.382	Vrms/krpm	
		Driver Porperty		F002		13	Kt_Motor	0.660	Nm/Arms	
			0 10 10 10	F003		14	Jr_Motor	0.000	kgm [~] 2	
			. 10	5004		15	Brake_Duty_Cycle	89.904	~	
			1 day	F004	1990	10	Brake_Delay	150	M2	_
				F005	30-	10 ×	Motor Using	22	DEG	_
				F007		10*	Motor_Osing	11	ASCII	
			L .		_	12	nocor_nam	NU2	13011	-
						J				
								www.kin	co.cn	
Ľ			_					Comm Status:	Open COM1 38400	

Fig.5-3 Configure motor by software

5.2 Trial Operation

5.2.1 Objective

The trial operation allows you to test whether the driver works properly, and whether the motor runs stably.

5.2.2 Precautions

- 1. Ensure that the motor is running without load. If the motor flange is fixed on the machine, ensure that the motor shaft is disconnected from the machine.
- 2. Ensure that motor cables, motor encoder cables, and power circuits (power lines and control power lines) are properly connected. For details, see Chapter 3.
- 3. During the trial operation, if you long press ▲ or ▼ when the motor is running, pulse signals, digital input signals, and analog signals of the external controller are temporarily unavailable, so safety must be ensured.
- 4. During the trial operation, the system automatically adopts the instantaneous speed mode, that is, the "-3" mode.
- 5. After the trial operation, Group F006 exits automatically. To enter Group F006 again, you must re-activate the trial operation.
- 6. If motor/encoder cables are wrongly connected, the actual rotation speed of the motor may be the possible maximum rotation speed, or the rotation speed is 0 and the actual current value is the maximum value. In this case, make sure to release the button; then check cable connection and test it again.
- 7. Don't use trial operation if the keys are broken.

5.2.3 Operating Steps

- 1. Press **MODE** to enter Group F004. Select the object address "d4.18", and check the motor type.
- 2. Press **MODE** to enter Group F000. Select the object address "d0.02", and set the target speed to "SpeedDemand_RPM".
- Press MODE to enter Group F006. Arrange a test for keys, with the default value of d6.40. Firstly, press
 ▼ to adjust the data to d6.31. Then, press ▼, the data automatically changes to "d6.15". Finally, press ▲ to adjust the data to d6.25.
- 4. Press ENTER to activate trial operation. In this case, the numeric display is "adc.d", and the motor shaft releases. When long pressing ▲ or ▼, the motor automatically locks, and runs according to "+SpeedDemand_RPM" or "-SpeedDemand_RPM" separately. During the trial operation, the numeric displays the motor speed in real time.

Press MODE Press ENTER Enter F004 d4.18 Check Motor Model Press MODE Set speed(Positive and Press ENTER Enter F000 d0.02 negative speed can be set) Press MODE d6.40--Press ▼--Press ENTER Enter F006 d6.31(press ▼ change to Test the keys d6.15)-Press ▲ --d6.25 Press ENTER (LED displays" abc.d") Motor runs with the d0.02 speed, Hold pressing ▲, Hold motor runs in positive direction, pressing V means pressing A or V negative direction Fig.5-4 Flow chart for trial operation

5.2.4 Diagram of Trial Operation

5.3 EASY USE

Easy use is used to help users rapidly set control loop parameters, so as to avoid complex steps of adjusting servo.

After adjusting, driver's performance will be fine in most of applications. And this also open another isolated area, which is convenient for users

to set significant parameters.

Easy Use operation steps

1. EASY includes common parameters. Please ensure each of them one by one and save by EA00.

1.1 If motor type (EA01) does not change, set 1 to EA00 and save parameters in forward steps.

1.2 If motor type (EA01) does not change, set 2 to EA00. Then save parameters in forward steps and reboot driver.

1.3 After finishing EASY, please make motor run. If performance is good, it is unnecessary to operate TunE. Otherwise, re-operate TunE.

2. TunE process is inertia measuring process. It is valid after inputting value, but they are needed to be saved by Tn00.

2.1 After making inertia measuring via Tn03, drive will change stiffness (Tn01) according to setting.

2.2 Please run the driver and motor. If performance is not ideal, please modify stiffness step by step via Tn01. Please note that adjusting and observing performance should be at the same time.

Note:

1. Inertia measuring might cause shake of machine. Please close power supply or driver at once.

2. After execute EASY process, we strongly suggest to execute TunE and adjust stiffness level.

3. Design aim of EASY and TunE is to solve the problem of panel operation. If users use software to init parameters or change motor type, only EA00, EA01 and Tn00 can displayed on the menu of EASY and TunE. Users must ensure motor type via EA01, driver will restore defaults and display complete EASY and TunE menu.

Reason for the failure of tuning: Incorrect wiring Incorrect setting of motor type Mechanical stiffness is too low Mechanical intermittent exists. Acc/Dcc is lower than stickiness friction torque

LED	Parameter	Description		Default
EA01	Motor Type	For a new motor controller, the the LED display. If the new motor motor type is auto-recognized a The motor type saved in the o compared later on. If they are The user needs to confirm the controller to eliminate this state Examples of motor type, motor	set motor type is "00" and "3030" appears at or controller is connected to a valid motor, the and saved. controller and the connected motor type are different, "FFFF" flashes at the LED display. EA01 value, save motor data and reboot the code and EA01 display value.	/
		Motor type	Motor code/ LED display	
		SMH40S-0010-30xxx-4LKH	KY/594B JY/594A MY/594D	
		SMH40S-0005-30xxx-4LKH	KZ/5A4B JZ/5A4A MZ/5A4D	
		SMH60S-0020-30xxx-3LKH	K0/304B	

Table 1 EASY menu parameters

		SMH60S-0040-30xxx-3LKH K1/314B	
EA02	Command Type	The command type affects controller-internal interface settings, the initial operation mode after power on and the default settings for DIN- and OUT functions (refer to table 4-3).0: CW/CCW pulse train modeOperation mode = -41: P/D pulse train modeOperation mode = -42: A/B phase control master / slave modeOperation mode = -46: Analog velocity mode by AIN1Operation mode = -37: Analog velocity mode by AIN2Operation mode = -38: Communication9: Position table mode	1
EA03	Gear Factor Numerator	Used when EA02 is set to 0-2.	1000
EA04	Gear Factor Denominator	By default, the display shows the values in decimal format. If the number is greater than 9999, the display is in hexadecimal format.	1000
EA05	Analog Speed Factor	Used when EA02 is set to 6 or 7. The relationship between analog input voltage and motor velocity the unit of measure is rpm/V. For controller use with standard KINCO-AS motors, the maximum value is 374, the maximum velocity is 3740rpm/10v/. For more details see chapter 9.3 (d3.29).	300
EA06	 Load type Application Limit switch Alarm output polarity 	The meaning of each digit of the LED display from right to left. (1) Load type, influences the control loop. 0: No load 1: Belt drive 2: Ball screw (2) Application, influences the control loop. 0: P2P 1: CNC 2: Master / slave mode (3) Limit switch. 0: Controller default 1: Delete the limit switch function (4) Polarity of OUT5 0: Normally closed contacts 1: Normally open contacts	1001
EA07	Homing method	Refer to chapter 6.6	0
EA00	Save Parameters	 Write "1" to save control and motor parameters. Write "2" to save control and motor parameters and reboot the servo. Write "3" to reboot the servo. Write "10" to initialize the control parameters. Notice: 	/

	Users must save control and motor parameters and reboot the controller	
	after changing the motor type in EA01.	
	After saving the parameters, the servo will set the control loop parameters	
	according to the load type and application.	

Table 2 Stiffness and control loop settings

Stiffness	Kpp/[0.01Hz]	Kvp/[0.1Hz]	Output filter [Hz]	Stiffness	Kpp/[0.01Hz]	Kvp/[0.1Hz]	Output filter [Hz]
0	70	25	18	16	1945	700	464
1	98	35	24	17	2223	800	568
2	139	50	35	18	2500	900	568
3	195	70	49	19	2778	1000	733
4	264	95	66	20	3334	1200	733
5	334	120	83	21	3889	1400	1032
6	389	140	100	22	4723	1700	1032
7	473	170	118	23	5556	2000	1765
8	556	200	146	24	6389	2300	1765
9	639	230	164	25	7500	2700	1765
10	750	270	189	26	8612	3100	1765
11	889	320	222	27	9445	3400	∞
12	1056	380	268	28	10278	3700	∞
13	1250	450	340	29	11112	4000	∞
14	1500	540	360	30	12500	4500	∞
15	1667	600	392	31	13889	5000	~

Note: When setting for the stiffness or inertia ratio results in a Kvp value of greater than 4000, it isn't useful to increase stiffness any more.

Flowchart of EASY use function

Note: The menu is exited automatically if there is no operation in 60s, and users have to start again. Entered data is valid immediately, but must be saved via EA00.

Flowchart for the TunE menu

Note: Note: Data inputted are valid at once, but must be saved via Tn00.

Considering about safety, it is unnecessary to press "SET" to verify when users need to modify stiffness or inertia ratio. Data are also valid but are only adjusted step by step.

5.4 Description of Parameters

Group F000 represents an instruction group, and the parameters in this group cannot be saved.

The address d4.00 is used to save the motor parameters set for Group F004. Note that this group of parameters must be set when customers choose third-party motors, but these parameters need not to be set for the motors delivered and configured by our company. d2.00, d3.00 and d.5.00 represent the same address, and are used to save all setup parameters except those of motors (Group F001/F002/F003/F004/F005). Three numeric objects (d2.00/d3.00/d5.00) are developed to facilitate customers.

Parameter List: Group F000 (To Set Driver Instructions)

Numeric	Internal	Variable Name	Meaning	Default	Range
Display	Address			Value	

d0.00	6060008	Operation_Mode	0.004 (-4): Pulse control mode, including	-4	N/A
			pulse direction (P/D) and double pulse		
			(CW/CCW) modes. 0.003 (-3):		
			instantaneous speed mode		
			0001 (1): Internal position control mode		
			0003 (3): Speed mode with		
			acceleration/deceleration		
			0004 (4): Torque mode		
			Note: Only applied in the working mode		
			where no external signals control the		
			driver.		
d0.01	2FF00508	Control_Word_E	000.0: Releases the motor	0	N/A
		asv – –	000.1: Locks the motor		
		,	001.0: Clears errors		
			Note: Only applied in the situation where		
			enabling a driver or wrong resetting is		
			not controlled by external signals. After		
			the wrong reset of the driver, the motor		
			must be enabled again.		
d0.02	2FF00910	SpeedDemand	Sets the motor's target rotation speed	0	N/A
		RPM	when the driver works in the "-3" or "3"	-	-
			mode and the address d3.28 is set to 0		
			(without external analog control).		
d0.03	60710010	CMD a	Sets input torque instructions (current	0	-2047~2047
			instructions) when the driver works in	-	
			the "4" mode and the address d3.30 is		
			set to 0 (without external analog		
			control).		
d0.04	2FF00A10	Vc Loop BW	Sets the velocity loop bandwidth. The	60	0~600
		· · · · · · ·	unit is Hz.		
			This variable can only be set after auto		
			tuning is performed properly: otherwise		
			the actual bandwidth goes wrong, which		
			causes abnormal working of the driver.		
			ger ale all the second		
			If the auto tuning result is abnormal.		
			If the auto tuning result is abnormal, setting this parameter may also cause		
			If the auto tuning result is abnormal, setting this parameter may also cause abnormal working of the driver		
			If the auto tuning result is abnormal, setting this parameter may also cause abnormal working of the driver. Note: This parameter cannot be applied		
			If the auto tuning result is abnormal, setting this parameter may also cause abnormal working of the driver. Note: This parameter cannot be applied when auto tuning is unavailable. After		
			If the auto tuning result is abnormal, setting this parameter may also cause abnormal working of the driver. Note: This parameter cannot be applied when auto tuning is unavailable. After setting this parameter, apply d2 00 to		
			If the auto tuning result is abnormal, setting this parameter may also cause abnormal working of the driver. Note: This parameter cannot be applied when auto tuning is unavailable. After setting this parameter, apply d2.00 to save the settings as required		
d0.05	2FE00B10	Pc Loop BW	If the auto tuning result is abnormal, setting this parameter may also cause abnormal working of the driver. Note: This parameter cannot be applied when auto tuning is unavailable. After setting this parameter, apply d2.00 to save the settings as required. Sets the position loop bandwidth The	10	0~100
d0.05	2FF00B10	Pc_Loop_BW	If the auto tuning result is abnormal, setting this parameter may also cause abnormal working of the driver. Note: This parameter cannot be applied when auto tuning is unavailable. After setting this parameter, apply d2.00 to save the settings as required. Sets the position loop bandwidth. The unit is Hz	10	0~100
d0.05	2FF00B10	Pc_Loop_BW	If the auto tuning result is abnormal, setting this parameter may also cause abnormal working of the driver. Note: This parameter cannot be applied when auto tuning is unavailable. After setting this parameter, apply d2.00 to save the settings as required. Sets the position loop bandwidth. The unit is Hz. Note: After setting this parameter apply	10	0~100
d0.05	2FF00B10	Pc_Loop_BW	If the auto tuning result is abnormal, setting this parameter may also cause abnormal working of the driver. Note: This parameter cannot be applied when auto tuning is unavailable. After setting this parameter, apply d2.00 to save the settings as required. Sets the position loop bandwidth. The unit is Hz. Note: After setting this parameter, apply d2.00 to save the settings as required	10	0~100
d0.05	2FF00B10	Pc_Loop_BW	If the auto tuning result is abnormal, setting this parameter may also cause abnormal working of the driver. Note: This parameter cannot be applied when auto tuning is unavailable. After setting this parameter, apply d2.00 to save the settings as required. Sets the position loop bandwidth. The unit is Hz. Note: After setting this parameter, apply d2.00 to save the settings as required.	10	0~100

	starts. All input signals are neglected during auto tuning. The variable is automatically changed to 0 after auto tuning is completed. Sets the variable to other values to end	
	auto tuning.	

Parameter List: Group F001 (To Set Real-Time Display Data)

Numeric	Internal Address	Variable Name	Displayed Content	
Display				
d1.00	2FF00F20	Soft_Version_LED	Software version of numeric display	
d1.01	2FF70020	Time_Driver	Accumulated working time of the driver (S)	
d1.02	2FF01008	Motor_IIt_Rate	Ratio of real iit to the maximum iit of a motor	
d1.03	60F61210	Motor_IIt_Real	Actual data of motor overheat protection	
			$I = \frac{\sqrt{Motor_IIt_Real*512}}{\sqrt{Motor_IIt_Real*512}} * \frac{I_{peak}}{\sqrt{Motor_IIt_Real*512}}$	
			$\frac{1}{100}$ 2047 $\sqrt{2}$	
d1.04	2FF01108	Driver_IIt_Rate	Ratio of real iit to the maximum iit of a driver	
d1.05	60F61010	Driver_IIt_Real	Actual data of driver overheat protection	
d1.06	2FF01208	Chop_Power_Rate	Ratio of actual power to rated power of a	
			braking resistor	
d1.07	60F70D10	Chop_Power_Real	Actual power of a braking resistor	
d1.08	60F70B10	Temp_Device	Temperature of a driver (°C)	
d1.09	60790010	Real_DCBUS	Actual DC bus voltage	
d1.10	60F70C10	Ripple_DCBUS	Fluctuating value of the bus voltage (Vpp)	
d1.11	60FD0010	Din_Status	Status of an input port	
d1.12	20101410	Dout_Status	Status of an output port	
d1.13	25020F10	Analog1_out	Filter output of external analog signal 1	
d1.14	25021010	Analog2_out	Filter output of external analog signal 2	
d1.15	26010010	Error_State	Error state	
d1.16	26020010	Error_State2	Error state word 2	
d1.17	60410010	Status_Word	Driver status word	
d1.18	60610008	Operation_Mode_Buff	Efficient working mode of a driver	
d1.19	60630020	Pos_Actual	Actual position of a motor	
d1.20	60FB0820	Pos_Error	Position following error	
d1.21	25080420	Gear_Master	Count of input pulses before electronic gear	
d1.22	25080520	Gear_Slave	Count of executed pulses after electronic	
			gear	
d1.23	25080C10	Master_Speed	Pulse speed entered by the master axis	
			(pulse/mS)	
d1.24	25080D10	Slave_Speed	Pulse speed of the slave axis (pulse/mS)	
d1.25	606C0010	Real_Speed_RPM	Real speed (rpm)	
-------	----------	-----------------	--	
			Internal sampling time: 200 mS	
d1.26	60F919	Real_Speed_RPM2	Real speed (0.01 rpm)	
			Internal sampling time: 200 mS	
d1.27	60F91A10	Speed_1mS	Speed data (inc/1 mS)	
			Internal sampling time: 1 mS	
d1.28	60F60C10	CMD_q_Buff	Internal effective current instruction	
d1.29	60F61710	l_q	Actual current	
			$\mathbf{I}_{\rm rms} = \frac{I - q}{2047} * \frac{\mathbf{I}_{\rm peak}}{\sqrt{2}}$	
d1.30	60F90E10	K_Load	Load parameter	
d1.31	301004	Z_Capture_Pos	Position data captured by encoder index	
			signals	

Parameter List: Group F002 (To Set Control Loop Parameters)

Numeric	Internal	Variable	Meaning	Default	Range
Display	Address	Name		Value	
d2.00	2FF00108	Store_Loop_	1: Stores all control parameters except motor	0	N/A
		Data	parameters		
			10: Initializes all control parameters except		
			motor parameters		
d2.01	60F90110	Кvр	Sets the response speed of velocity loop	N/A	0~32767
d2.02	60F90210	Kvi	Time used to adjust speed control to	N/A	0~16384
			compensate minor errors		
d2.03	60F90308	Notch_N	Notch/filtering frequency setting for a velocity	45	0~90
			loop, used to set the frequency of the internal		
			notch filter, so as to eliminate the mechanical		
			resonance produced when the motor drives the		
			machine. The formula is F=Notch_N*10+100.		
			For example, if the mechanical resonance		
			frequency is $F = 500$ Hz, the parameter should		
			be set to 40.		
d2.04	60F90408	Notch_On	Enable or disable the notch filter	0	0~1
			0: Disable the trap filter		
			1: Enable the trap filter		
d2.05	60F90508	Speed_Fb_N	You can reduce the noise during motor	45	0~45
			operation by reducing the feedback bandwidth		
			of velocity loop. When the set bandwidth		
			becomes less, the motor responds slower.		
			The formula is F=Speed_Fb_N*20+100.		
			For example, to set the filter bandwidth to "F =		
			500 Hz", you need to set the parameter to 20.		
d2.06	60F90608	Speed_Mode	0: Speed response after traveling through a	0	0~2

			low-pass filter 1: Direct speed response without filtering		
			2: Feedback on output feedback		
d2.07	60FB0110	Крр	Proportional gains on position loop Kpp	1000	0~10000
d2.08	60FB0210	K_Speed_FF	0 indicates no feedforward, and 256 indicates 100% feedforward	255	0~255
d2.09	60FB0310	K_Acc_FF	The data is inversely proportional to the feedforward	32767 (7FF.F)	32767~1 0
d2.10	2FF00610	Profile_Acce_ 16	To set trapezoidal acceleration (rps/s) in the "3" and "1" modes	610	0~2000
d2.11	2FF00710	Profile_Dece_ 16	To set trapezoidal acceleration (rps/s) in the "3" and "1" modes	610	0~2000
d2.12	60F60110	Кср	To set the response speed of the current loop and this parameters does not require adjusting	N/A	N/A
d2.13	60F60210	Kci	Time used to adjust current control to compensate minor errors	N/A	N/A
d2.14	60730010	CMD_q_Max	Indicates the maximum value of current instructions	N/A	N/A
d2.15	60F60310	Speed_Limit_ Factor	The factor that limits the maximum speed in the torque mode $\int_{K}^{F} = F_{\text{Actual torque}} + V_{\text{Actual speed Maximum speed}} + V_{\text{Actual speed Maximum speed}} + V_{\text{Actual speed Maximum speed}}$	10	0~1000
			Actual torque Set torque Actual speed Maximum speed Actual speed/Maximum speed V the maximum speed complies with d2.24 Max_Speed_RPM parameter settings		
d2.16	607E0008	Invert_Dir	Runs polarity reverse 0: Counterclockwise indicates the forward direction 1: Clockwise indicates the forward direction	0	0~1
d2.17	60F90E10	K_Load	Indicates load parameters	N/A	20~1500 0
d2.18	60F90B10	Kd_Virtual	Indicates the kd of observers	1000	0~32767
d2.19	60F90C10	Kp_Virtual	Indicates the kp of observers	1000	0~32767
d2.20	60F90D10	Ki_Virtual	Indicates the ki of observers	0	0~16384
d2.21	60F91010	Sine_Amplitu de	Proper increase in this data will reduce the tuning error, but machine vibration will become severer. This data can be adjusted properly according to actual conditions of machines. If the data is too small, the auto tuning error becomes greater, or even causes a mistake.	64	0~1000
d2.22	60F91110	Tuning_Scale	It is helpful to reduce the auto tuning time by reducing the data, but the result may be unstable.	128	0~16384
d2.23	60F91210	Tuning_Filter	Indicates filter parameters during auto-tuning	64	1~1000

Parameter List: Group F003 (To Set Input/Output & Pattern Operation

Parameters)

Numeric	Internal	Variable Name	Meaning Defat		Range
Display	Address			Value	
d3.00	2FF00108	Store_Loop_Data	1: Stores all control parameters except	0	N/A
			motor parameters		
			10: Initializes all control parameters except		
			motor parameters		
d3.01	20100310	Din1_Function	000.1: Driver enable	000.1	N/A
d3.02	20100410	Din2_Function	000.2: Driver fault reset	000.2	N/A
d3.03	20100510	Din3_Function	000.4: Operation mode control	000.4	N/A
d3.04	20100610	Din4_Function	000.8: P control for velocity loop	000.8	N/A
d3.05	20100710	Din5_Function	001.0: Position positive limit	001.0	N/A
d3.06	20100810	Din6_Function	002.0: Position negative limit	002.0	N/A
d3.07	20100910	Din7_Function	004.0: Homing signal	004.0	N/A
			008.0: Reverse speed demand		
			010.0: Internal speed control 0		
			020.0: Internal speed control 1		
			800.1: Internal speed control 2		
			040.0: Internal position control 0		
			080.0: Internal position control 1		
			800.2: Internal position control 2		
			800.4 Multi Din 0		
			800.8 Multi Din 1		
			801.0 Multi Din 2		
			802.0 Gain switch 0		
			804.0 Gain switch 1		
			100.0: Quick stop		
			200.0: Start homing		
			400.0: Activate command		
d3.08	20100110	Dio_Polarity	Sets IO polarity	0	N/A
d3.09	2FF00810	Dio_Simulate	Simulates input signals, and enforce output	0	N/A
			signals for outputting		
d3.10	2000008	Switch_On_Auto	Automatically locks motors when drivers 0		0~1
			are powered on		
			0: No control		
			1: Automatically locks motors when drivers		
			are powered on		
d3.11	20100F10	Dout1_Function	000.1: Ready	000.1	N/A
d3.12	20101010	Dout2_Function	000.2: Error 000.2 N/A		N/A
d3.13	20101110	Dout3_Function	000.4: Position reached	00a.4	N/A
d3.14	20101210	Dout4_Function	000.8: Zero velocity	000.8	N/A

d3.15	20101310	Dout5 Function	001.0: Motor brake	001.0	N/A
			002.0:Velocity reached		
			004.0: Index		
			008.0: The maximum speed obtained in the		
			torque mode		
			010.0: PWM ON		
			020.0: Position limiting		
			040.0: Reference found		
			080.0: Reserved		
			100.0: Multi Dout 0		
			200.0: Multi Dout 1		
			400.0: Multi Dout 2		
d3.16	20200D08	Din_Mode0	If a digital input is defined as Operation	-4	N/A
			mode control, then this operation mode is		
			selected when the input signal is invalid		
d3.17	20200E08	Din_Mode1	If a digital input is defined as Operation	-3	N/A
			mode control, then this operation mode is		
			selected when the input signal is valid		
d3.18	20200910	Din_Speed0_RPM	Multi-speed control: 0 [rpm]	0	N/A
d3.19	20200A10	Din_Speed1_RPM	Multi-speed control: 1 [rpm]	0	N/A
d3.20	20200B10	Din_Speed2_RPM	Multi-speed control: 2 [rpm]	0	N/A
d3.21	20200C10	Din_Speed3_RPM	Multi-speed control: 3 [rpm]	0	N/A
d3.22	25020110	Analog1_Filter	Used to smooth the input analog signals	5	1~127
			F (Filter Frequency) = 4000/ (2π*		
			Analog1_Filter)		
			T (Time Constant) = Analog1_Filter/4000		
			(S)		
d3.23	25020210	Analog1_Dead	Sets dead zone data for external analog	0	0~8192
			signal 1		
d3.24	25020310	Analog1_Offset	Sets offset data for external analog signal 1	0	-8192~8
					192
d3.25	25020410	Analog2_Filter	Used to smooth the input analog signals	5	1~127
			Filter frequency: f=4000/(2π*		
			Analog1_Filter)		
			Time Constant: T = Analog1_Filter/4000 (S)		
d3.26	25020510	Analog2_Dead	Sets dead zone data for external analog	0	0~8192
			signal 2		
d3.27	25020610	Analog2_Offset	Sets offset data for external analog signal 2	0	-8192~8
					192
d3.28	25020708	Analog_Speed_Co	Chooses analog-speed channels	0	0~2
		n	0: Invalid analog channel		10~17
			1: Valid analog channel 1 (AIN1)		20~27
			2: Valid analog channel 2 (AIN2)		
			10 \sim 17: AIN1 for "Din_Speed (X-10)"		
			20 \sim 27: AIN2 for "Din_Speed (X-20)"		

r					1
			Valid in mode -3, 3 and 1.		
d3.29	25020A10	Analog_Speed_Fa	Sets the proportion between analog signals	1000	N/A
		ctor	and output speed		
d3.30	25020808	Analog_Torque_C	Chooses analog-torque channels	0	0~2
		on	0: Invalid analog channel		
			1: Valid analog channel 1 (AIN1)		
			2: Valid analog channel 2 (AIN2)		
			Valid mode 4		
d3.31	25020B10	Analog_Torque_F	Sets the proportion between analog signals	1000	-32768~
		actor	and output speed (current)		32767
d3.32	25020908	Analog_MaxT_Co	0: No control	0	0~2
		n	1: Max. torque controlled by AIN 1		
			2: Max. torque controlled by AIN 2		
d3.33	25020C10	Analog_MaxT_Fac	Indicates the max torque factor on analog	8192	0~32767
		tor	signal control		
d3.34	25080110	Gear_Factor	Indicates the numerator to set electronic	1000	-32767~
			gears when the operation mode is -4		32767
d3.35	25080210	Gear_Divider	Indicates the denominator to set electronic	1000	1~32767
			gears when the operation mode is -4		
d3.36	25080308	PD_CW	0: Double pulse (CW/CCW) mode	1	0~2
			1. Pulse Direction (P/D) mode		
			2.Incremental encoder mode		
			Note: To change this parameter, you need		
			to save it with the address "d5.00", and		
			restarts it later.		
d3.37	25080610	PD_Filter	To flat the input pulse.	3	1~32767
			Filter frequency: f=1000/(2π* PD_Filter)		
			Time constant: T = PD_Filter/1000		
			Unit: S		
			Note: If you adjust this filter parameter		
			during the operation, some pulses may be		
			lost.		
d3.38	25080810	Frequency Check	Indicates the limitation on pulse input	600	0~600
			frequency (k Hz)		
d3.39	25080910	Position Reach Ti	Indicates the position reached time window	10	0~32767
		mo	in the pulse mode		
		ine	Unit: mS		
d3.40	2FF10108	Din Position Sele	To select which parameter will be set.	0	0~7
		ct_L	0. Din_Pos0		
			1. Din Pos1		
			2. Din Pos2		
			3. Din Pos3		
			4. Din Pos4		
			5. Din Pos5		
			6. Din Pos6		
			7. Din Pos7		
1	1	1	··· -··-· -··	1	1

d3.41	2FF10210	Din_Position_M	Refer to d3.42	0	N/A
d3.42	2FF10310	Din Position N	Din_Pos L(Pulse number) =	0	N/A
			Din_Position_M *10000+ Din_Position_N		
d3.43	20200F10	Din_Control_Word	Input "Enable" signal controls the control	0	N/A
			word.		
d3.44	20201810	Din_Speed4_RPM	Multi-speed control: 4 [rpm]	0	N/A
d3.45	20201910	Din_Speed5_RPM	Multi-speed control: 5 [rpm]	0	N/A
d3.46	20201A10	Din_Speed6_RPM	Multi-speed control: 6 [rpm]	0	N/A
d3.47	20201B10	Din_Speed7_RPM	Multi-speed control: 7 [rpm]	0	N/A

Parameter List: Group F004 (To Set Motor Parameters)

Numeric	Internal	Variable Name	Meaning	
display	Address			
d4.00	2FF00308	Store_Motor_Data	1: Stores the set motor parameters	
d4.01	64100110	Motor_Num	Host computer (ASCII code) numerical display (hexadecimal)	
			"00"	
			Note: To change this parameter, you need to save it with the	
			address "d4.00", and restart it later.	
d4.02	64100208	Feedback_Type	Type of encoders	
			001.1: Differential ABZ and differential UVW signals	
			001.0: Differential ABZ and UVW signals of TTL	
			000.1: ABZ of TTL and differential UVW signals	
			000.0: ABZ of TTL and UVW signals of TTL	
d4.03	64100508	Motor_Poles	Number of motor poles pairs	
			[2p]	
d4.04	64100608	Commu_Mode	Searching excitation mode	
d4.05	64100710	Commu_Curr	Searching excitation current	
			[dec]	
d4.06	64100810	Commu_Delay	Delay in searching excitation	
			[mS]	
d4.07	64100910	Motor_IIt_I	Indicates current settings on overheat protection of motors	
			Ir[Arms]*1.414*10	
d4.08	64100A10	Motor_IIt_Filter	Indicates time settings on overheat protection of motors	
			Time: N*256/1000 Unit: S	
d4.09	64100B10	Imax_Motor	Indicates max peak current of motors	
			I[Apeak]*10	
d4.10	64100C10	L_Motor	Indicates phase inductance of motors	
			L[mH]*10	
d4.11	64100D08	R_Motor	Indicates phase resistance of motors	
			R[Ω]*10	
d4.12	64100E10	Ke_Motor	Indicates the reverse electromotive force of motors	
			Ke[Vp/krpm]*10	
d4.13	64100F10	Kt_Motor	Indicates the torque coefficient of motors	

			Kt[Nm/Arms]*100			
d4.14	64101010	Jr_Motor	Indicates the rotor inertia of motors			
			Jr[kgm^2]*1 000 000			
d4.15	64101110	Brake_Duty_Cycle	Indicates the duty cycle of contracting brakes			
			0~2500[0100%]			
d4.16	64101210	Brake_Delay	Indicates the delay time of contracting brakes			
			Default value: 150 ms			
d4.17	64101308	Invert_Dir_Motor	Indicates the rotation direction of motors			
d4.18	64101610	Motor_Using	Current using motor type.			
			PC Software Numeric Display Model			
			"K0"SMH60S-0020-30			
			"K1"SMH60S-0040-30			
			"K2"SMH80S-0075-30			
			"K3"SMH80S-0100-30			
			"K4"SMH110D-0105-20			
			"K5"SMH110D-0125-30			
			"K6"SMH110D-0126-20			
			"K7"SMH110D-0126-30			
			"K8"			
			"K9"			
			"KB" 424 B SMH130D-0105-20			
			"KC" 434 B SMH130D-0157-20			
			"KD" 444 B SMH130D-0210-20			
			"KE" 454 B SMH150D-0230-20			
			S0			
			"S1"130D-0157-20AAK-2LS			
			"S2"130D-0157-15AAK-2LS			
			"S3"130D-0200-20AAK-2HS			
			"S4"130D-0235-15AAK-2HS			
			"F8"85S-0045-05AAK-FLFN			
			"E0"SME60S-0020-30			
			"E1"SME60S-0040-30			
			"E2"SME80S-0075-30			
d4.19	64101410	Motor_Num	The same function as d4.01.But it is specially used for configuring motor at the first time,and needn't restart driver.			

Parameter List: Group F005 (To Set Driver Parameters)

Numeri	Internal	Variable Name	Meaning	Default	Note
С	Address			Value	
Display					
d5.00	2FF0010	Store_Loop_Data	1: Stores all control parameters except	0	
	8		motor parameters		
			10: Initializes all control parameters except		
			motor parameters		
d5.01	100B000	ID_Com	Station No. of Drivers	1	d5.00 need
	8		Note: To change this parameter, you need		be used to
			to save it with the address "d5.00", and		save and
			restart driver later.		restart when
					users
					change this
					parameter
d5.02	2FE0001	RS232_Bandrate	Sets the baud rate of a serial port	270	d5.00 need
	0		540 19200		be used to
			270 38400		save and
			90 115200		restart when
			Note: To change this parameter, you need		users
			to save it with the address "d5.00", and		change this
			restart driver later.		parameter
d5.03	2FE1001	U2BRG	Sets the baud rate of the serial port	270	Unnecessar
	0		540 19200		y to restart
			270 38400		
			90 115200		
			You need not restart driver.		
d5.04	60F7011	Chop_Resistor	Indicates the values of braking resistors	0	
	0				
d5.05	60F7021	Chop_Power_Rat	Indicates the nominal power of a braking	0	
	0	ed	resistor		
d5.06	60F7031	Chop_Filter	Indicates the time constant of a braking	60	
	0		resistor		
			Time: N*256/1000 Unit: S		
d5.07	2501011	ADC_Shift_U	Indicates data configuration of U phase	N/A	Please don't
	0		shift		adjust
			Note:Factory parameters		
d5.08	2501021	ADC_Shift_V	Indicates data configuration of V phase	N/A	Please don't
	0		shift		adjust
			Note:Factory parameters		
d5.09	3000011	Voltage_200	ADC original data when DC bus voltage is	N/A	Please don't
	0		200 V		adjust
			Note:Factory parameters		
d5.10	3000021	Voltage_360	ADC original data when DC bus voltage is	N/A	Please don't

	0		360 V		adjust
			Note:Factory parameters		
d5.11	60F6061	Comm_Shift_UVW	Indicates the excitation pointer of a motor	N/A	Please don't
	0		Note:Factory parameters		adjust
d5.12	2600001	Error_Mask	Indicates error masks	FFF.F	Please don't
	0		Note:Factory parameters		adjust
d5.13	60F7051	RELAY_Time	Indicates the relay operating time of	150	
	0		capacitor short-circuits		
			Unit: mS		
			Note:Factory parameters		
d5.14	2FF0040	Key_Address_F00	Sets numeric display data	N/A	
	8	1			
d5 15	65100B1	RS232_Loop_Ena	$0 \cdot 1$ to $1 = 1 \cdot 1$ to N	0	
donio	0	ble			
	2FFD001			0~	
d5.16	0	User_Secret	User password.16bits.	65535	
			CAN baudrate setting		
	0504000				Number
d5.17	2F81000	CAN_Baudrate	100.1M 50.500K	50	Need save
	ð		25:250K 12:125K		and restart
			5:50K 1:10K		
			Baudrate of RS485		
			1080: 9600		
d5.18	2FE2001	RS485 Baudrate	540: 19200	540	Need save
	0		270: 38400		and restart
			270.30400		
			90: 115200		
	0540000		RS485 communication protocol select		Neederse
d5.19	0.000100	RS485_Protocol	0: Modbus	1	Need Save
1	-				
	0		1: Same protocol as RS232		and restart

Chapter 6 Operation on Input/Output Ports

KINCO CD2S servo driver has 7 digital input ports (a digital input port can receive high-level or low-level signals, depending on whether high-level or low-level signals are chosen at the COM terminal) and 5 digital output ports,OUT1-OUT4 ports can drive 100 mA load, and OUT5 port can drive 500 mA load, and can directly drive the internal contracting brake device(There are terminals BR+, BR-, 24VB, GND in X2 port which are used for motor brake.It can drive 500mA load). You can freely configure all functions on digital input/output ports according to application requirements.

6.1 Digital Input Signals

6.1.1 Polarity Control on Digital Input Signals

Table 6-1: Simplified IO polarity setting variables						
Numeric Display	Variable Name	Meaning	Default Value	Range		
d3.08	Dio_Polarity	Sets IO polarity	0	N/A		
Table 6.2 Delarity acting methods for divital input signals						

	Table 6-2 Pola	inty setting n	iethous for digital input signals
	0- 2-	MODE	HER MARCHARTER M
(1)	2	3	(4)
Input/output port	Channel	Reserved	0: The input port is valid when no current passes the
selection	selection		port, and the output port is valid when the switch tube
0: Output port	Input: 1-7		is open
1: Input port	Output:		1: The input port is valid when the current passes the
	1-5		port, and the output port is valid when the switch tube
			is closed.
			Other: Check the current status

Table 6-1: Simplified IO polarity setting variables

Example 6-1: Polarity Setting for Digital Input Signal DIN1

Fig. 6-1 Polarity setting for digital input signal DIN1

		3 1 3	
1)	2	3	4
Input/output port selection	Channel selection	Reserved	0: D1N1 is enabled when S1
Set to 1 (input port	Set to 1 (DIN 1 selected)		opens
selected)			1: D1N1 is enabled when S1
			closes

Table 6-3 Polarity setting for digital input signal DIN1

Namely, if d3.08 is set to "110.0", it indicates that DIN1 is enabled when no current passes the input port; if d3.08 is set to "110.1", it indicates that DIN1 is enabled when any current passes the input port.

6.1.2 Simulation of Digital Input Signals

Table 6-4 IO simulation variable	Table	6-4 IO	simulation	variable
----------------------------------	-------	--------	------------	----------

Numeric Display	Variable Name	Meaning	Default Value	Rang e
d3.09	Dio_Simulate	Simulates input signals, and enforces output signals for outputting	0	N/A

Dio_Simulate (IO simulation) is for the software to simulate inputting of a valid signal. "1" indicates that the input signal is valid, and "0" indicates that the input signal is invalid.

Table 6-5 Settings on simulation of digital input signals

1)	2	3	4			
Input/output port selection	Channel	Reserved	0: No input signal is simulated, and no			
0: output port	selection		output signal is compulsorily outputted			
1: input port	Input: 1-7		1: Input signal is simulated, and output			
	Output: 1-4		signal is outputted compulsorily			
			Other: Check the current status			

Example 6-2: Simulate digital input DIN1

		o .	
1)	2	3	4)
Input/output port selection	Channel selection	Reserved	0: Invalid DIN1 simulation
Set to 1 (input port	Set to 1 (DIN 1 selected)		1: Valid DIN1 simulation
selected)			

Table 6-6: Simulate digital input DIN1

Namely, if d3.09 is set to "110.0", it indicates that no DIN1 input signals are simulated; if d3.09 is set to "110.1", it indicates that DIN1 input signals are simulated.

6.1.3 Status Display of Digital Input Signals

	Table 6-7 Variables fo	r status displa	y of digital input	signals
--	------------------------	-----------------	--------------------	---------

Numeric Display	Variable Name	Meaning	
d1.11	Din_Status	Status of input ports	

Din_Status (hexadecimal) is used to display the status of the actually input external signals in real time.

6.1.4 Addresses & Functions of Digital Input Signals

Numeric	Variable	Meaning	Default Value
Display	Name		
d3.01	Din1_Function	000.1: Driver enable	000.1 (Driver enable)
		000.2: Driver fault reset	
d3.02	Din2_Function	000.4: Operation mode control	000.2 (Driver fault reset)
		000.8: P control for velocity loop	
d3.03	Din3 Function	001.0: Position positive limit	000.4 (Operation mode control)
	_	002.0: Position negative limit	
42.04	Din4 Eurotion	004.0: Homing signal	000.8 (B control for valacity
u3.04	DIN4_FUNCTION	008.0: Reverse speed demand	
		010.0: Internal speed control 0	юф)
d3.05	Din5_Function	020.0: Internal speed control 1	001.0 (Position positive limit)
		800.1: Internal speed control 2	
43.06	Dine Eurotion	040.0: Internal position control 0	002.0 (Position pogative limit)
u3.00		080.0: Internal position control 1	002.0 (Fosition negative innit)
		800.2: Internal position control 2	
d3.07	Din7 Function	800.4 Multi Din 0	004.0 (Homing signal)
	_	800.8 Multi Din 1	
		801.0 Multi Din 2	
		802.0 Gain switch 0	
		804.0 Gain switch 1	
		100.0: Quick stop	
		200.0: Start homing	

Table 6-8 Addresses & default functions of digital input signals

	400.0: Activate command	

Note:DinX_Function (X ranges from 1 to 7) is used to define the functions of digital input ports. User can freely define the functions of the digital input ports according to actual applications.

Table 6-9 Meaning of defined functions of digital input signals

Function	Meaning
Disable	Used to cancel the function of this digital input.
Driver enable	By default, the driver enable signal is valid, and the motor shaft is locked.
Driver fault reset	Signals on the rising edge are valid, and alarms are cleared.
Operation mode control	To switch between two operation modes.
	You can freely determine the operation modes corresponding to valid signals
	and invalid signals by performing settings through d3.16 Din_Mode0 (choose
	0 for operation mode) of Group F003 and Din_Mode1 (choose 1 for operation
	mode) of Group F003.
P control for velocity loop	Indicates the control on stopping integration in velocity loop. The control is
	applied in the occasion where high-speed system stop occurs, but
	overshooting is not expected.
	Note: In the "-3" mode, if the signal is valid, fixed errors occur between the
	actual speed and target speed.
Position positive limit	Indicates the limit of forward running of motors (normally closed contact by
	default).
	By default, the driver regards position positive limits as valid, and polarity can
	be modified to adjust to normally open switches.
Position negative limit	Indicates the limit of inverted running of motors (normally closed contact by
	default).
	By default, the driver regards position negative limits as valid, and polarity can
	be modified to adjust to normally open switches.
Homing signal	To find origins of motors.
Reverse speed demand	To reverse the target speed in the speed mode ("-3" or "3").
Internal speed control 0	To control internal multiple speeds.
Internal speed control 1	Note: For details, see Section 7.5 Internal Multi-Speed Control.
Internal speed control 2	
Internal position control 0	To control internal multiple positions.
Internal position control 1	Note: For details, see Section 7.4 Internal Multi-Position Control.
Internal position control 2	
Multi Din 0	
Multi Din 1	To switch multiple electronic gear
Multi Din 2	
Gain switch 0	To switch multiple gain parameters(P-gain of velocity loop,i-gain of velocity
Gain switch 1	loop,p-gain of position loop)
Quick stop	When the signal is valid, the motor shaft releases.
	After the signal is removed, the driver requires re-enabling.
Start homing	When the rising edge of the signal is detected, it will start homing command.

6.1.5 Multiple electronic gear ratio switch function and multiple gain switch

function

1. Multiple electronic gear ratio switch function

Multiple electronic gear ratio is determined by combined with Multi Din 0, Multi Din 1 and Multi Din 1 defined in I/O.For electronic gear molecular (0~7) and electronic gear denominator (0~7), the default value is 1000. They can not set by panel on the driver temporarily and need to be set via software.

When electronic gear ratio changes, the pulse count might deviates. This is normal. Please be careful.

Multi Din 2	Multi Din 1	Multi Din 0	Name	Parameter	
				Name	Address
0	0	0	The 0 electronic	Molecular 0	25080110
			ratio	Denominator 0	25080210
0	0	1	The 1 st electronic	Molecular 1	25090110
			ratio	Denominator 1	25090210
0	1	0	The 2 nd electronic	Molecular 2	25090310
			ratio	Denominator 2	25090410
0	1	1	The 3 rd electronic	Molecular 3	25090510
			ratio	Denominator 3	25090610
1	0	0	The 4 th electronic	Molecular 4	25090710
			ratio	Denominator 4	25090810
1	0	1	The 5 th electronic	Molecular 5	25090910
			ratio	Denominator 5	25090A10
1	1	0	The 6 th electronic	Molecular 6	25090B10
			ratio	Denominator 6	25090C10
1	1	1	The 7 th electronic	Molecular 7	25090D10
			ratio	Denominator 7	25090E10

2. Multiple gain switch function

For convenience in test, gain switch 0, gain switch 1 are defined in I/O to choose gain. Multiple gain PI pointer (60F92808) is used to display current used gain data.

Auto-tuning can only be used to set PI parameter in the group 0. Bandwidth of speed loop (2FF00A100) and bandwidth of position loop (2FF00B10) are only connected with data in group 0. Others need to be set manually.

PI_switch (60F90908) is used to automatically switch gain, only in the 0 gain and 1st gain. Under mode -4, 1, 3, when position-to-signal is invalid, the 0 PI can be used. When it is valid, the first PI can be used. If gain switch function is defined in I/O, PI_switch is valid.

Gain switch input 1	Gain switch 0	Name	Parameter	
			Name	Address

0	0	The 0 gain	Кур О	60F90110
			Kvi O	60F90210
			Крр О	60FB0110
0	1	The 1 st gain	Kvp 1	23400410
			Kvi 1	23400510
			Крр 1	23400610
1	0	The 2 nd gain	Кур 2	23400710
			Kvi 2	23400810
			Крр 2	23400910
1	1	The 3 rd gain	Кур З	23400A10
			Kvi 3	23400B10
			Крр З	23400C10

Example 6-3: Driver Enable Setting

Requirement: The "driver enable" function is controlled through an external digital output port. In this example, the digital input port DIN1 is defined as the "driver enable" function. Table 6-10 shows the setup method.

Numeric Display	Variable Name	Parameter Settings		
d3.01	Din1_Function	Set to 000.1		
d3.00	Store_Loop_Data	Set to 1		

Table 6-10 Digital Input Port DIN1 Defined as the "Driver Enable" Function

Note: Any digital output of DIN1-7 can be defined as "driver enable", and is set to 000.1, that is, bit 0 is valid. Requirement: Enable the function of automatically powering on the driver by setting internal parameters in drivers instead of external digital input ports. Table 6-11 describes the setup method.

Table 6-11 Enabling the function of automatically powering on the driver by setting internal parameters in

drivers				
Numeric Display	Variable Name	Parameter Settings		
d3.01- d3.07	DinX_ Function	None of the digital input port can be		
	(1~7)	set to 000.1, that is, the Enable		
		function is not controlled by any		
		digital input port.		
d3.10	Switch_On_Auto	Set to 1		
d3.00	Store_Loop_Data	Set to 1		

Example 6-4: Disabling Position Positive/Negative Limit Settings

When the driver is delivered, the DIN5 of the motor is the position positive limit and DIN6 is the position negative limit by default. If there are no external position positive/negative limit switches, this function must be disabled so that the servo driver can work properly. Table 6-12 describes the setup method.

Table 6-12: Disabling position positive/negative limit settings

		01	1	0	0
Numeric	Variable Name	Paramete	er Settings	6	

Display		
d3.05	Din5_Function	Change the default value 001.0 (position positive limit) to 000.0
d3.06	Din6_Function	Change the default value 002.0 (position negative limit) to
		000.0
d3.00	Store_Loop_Data	Set to 1

Example 6-5: Operation Mode Control on Drivers

Requirements: Defines the input port DIN3 as the operation mode control on drivers, and the operation mode is "-4" (pulse control mode) when DIN3 fails, and is "-3" (instantaneous speed mode) when DIN3 is valid. Table 6-13 describes the setup method.

Numeric Display	Variable Name	Parameter Settings		
d3.03	Din3_Function	Set to 000.4		
d3.16	Din_Mode0	Set to 0.004 (-4)		
d3.17	Din_Mode1	Set to 0.003 (-3)		
d3.00	Store_Loop_Data	Set to 1		

Table 6-13 Settings on operation mode control on drivers

Note: If the driver is required to operate in some mode with power on, one of the digital input must be set as function "Operation Mode Control". Then you can set the operation modes that require in the parameters d3.16 or d3.37 in Group F003.

6.1.6 Wiring of Digital Input Port

1. NPN wiring diagram (to the controller that supports low level output)

Fig. 6-2 NPN wiring diagram (to the controller that supports low level output)

2. PNP wiring diagram (to the controller that supports high level output)

Fig. 6-3 PNP wiring diagram (to the controller that supports high level output)

6.2 Digital Output Signals

6.2.1 Polarity Control on Digital Output Signals

Table of 14 Valiables for Setting simplified to polarity					
Numeric	Variable Name	Meaning	Default	Range	
Display			Value		
d3.08	Dio_Polarity	Sets IO polarity	0	N/A	

Table 6-14 Variables for setting simplified IO polarity

Dio_Polarity (simplified IO polarity settings) is used to set the polarity of valid digital output signals. The number "1" indicates normally open, and "0" indicates normally close.Default is 1.

6.2.2 Simulation of Digital Output Signals

Table 6-1	5 IO sim	ulation v	ariables
-----------	----------	-----------	----------

Numeric	Variable Name	Meaning	Default	Range

Display			Value	
d3.09	Dio_Simulate	Simulates input signals, and the output signal is	0	N/A
		outputted compulsorily		

Dio_Simulate (IO simulation) is to simulate the output of a valid signal. The number "1" indicates that the output signal is valid, and "0" indicates that the output signal is invalid.

6.2.3 Status Display of Digital Output Signals

Numeric Display	Variable Name	Meaning		
d1.12	Dout_Status	Status of an output port		

Table 6-16 Variables for status display of digital output signals

Din_Status (hexadecimal) displays the status of actual external output signals in real time.

6.2.4 Addresses and Functions of Digital Output Signals

	Table 0-17 A	unesses and derault functions of digital of	Julput signals
Numeric	Variable Name	Meaning	Default Value
Display			
d3.11	Dout1_Function	000.1: Ready	000.1 (Ready)
		000.2: Error	
		- 000.4: Position reached	
d3.12	Dout2_Function	000.8: Zero velocity	000.2 (Error)
		001.0: Motor brake	
d3 13	Dout3 Function	002.0:Velocity reached	00a 4 (Position reached/Velocity
40.10		004.0: Index	reached/Max, velocity limit)
		008.0: The maximum speed	
d3.14	Dout4_Function	obtained in the torgue mode	000.8 (Zero velocity)
		010.0: PWM ON	
d3.15	Dout5_Function	020.0: Position limiting	001.0 (Motor brake)
		040.0: Reference found	
		080.0: Reserved	
		100.0: Multi Dout 0	
		200.0: Multi Dout 1	
		400.0: Multi Dout 2	

Tabla G 17 Addresse	so and default function	a of digital output aignala
Table 0-17 Addresse	s and delauit function	is of didital output signals

DinX_Function (X ranges from 1 to 5) is used to define the functions of digital output ports. User can freely define the functions of digital output ports according to actual applications.

Function	Meaning		
Disable	Cancel the function of this digital output		
Ready	The driver is ready for operation.		
Error	Alarm signals are output, indicating that the driver is faulty.		
Position reached	In the "-4" mode of pulse control, the target position data keeps		

Table 6-18 Meanings of the functions defined by digital output signals

unchanged in the window (d3.39) of the time of reaching the	
target position, and position errors are within the window of	
reaching the target position.	
After the motor is enabled, it is outputted when the motor speed	
is 0.	
The driver enables the motor, and contracting brake output is	
valid.	
In the "-3" or "3" internal speed control mode, signals are output	
after they reach the target speed.	
Z phase signal output (the speed should not be too high).	
In the "4" analog - torque mode, signals are output after the	
max restricted speed is reached.	
The driver enables the motor.	
Motor is in the status of position limiting.	
Homing is finished.	
Position reach for internal multiple position mode.	

Example 6-6: "Ready" settings

Requirement: The digital output port 1 is defined as the "Ready" function. For details on settings, see Table 6-19.

Table 6-19: "Ready" settings

Numeric Display	Variable Name	Parameter Settings
d3.11	Dout1_Function	Set to 000.1
d3.00	Store_Loop_Data	Set to 1

6.2.5 Wiring of Digital Output Port

1. Internal circuit diagram of digital output ports

		Digital output channel 1+
	OUT1+	Digital output channel 1+
	OUT1-	Digital output channel 1-
		Digital output channel 2+
	OUT2+	Digital Output channel 2+
_ ¥ ⇒.		Digital output channel 2-
	0012-	Disital autout sharrad 2
	OUT3	Digital output channel 3
_ <u>₹→\</u>		Digital output channel 4
	0014	DC power supply for
	24V O	digital output channel 5
	2 0	Common terminal
	COMO	
	OUT5+	Digital output channel 5+
╶┼┱╼┲┙╷┍───╯	00101	Disited as truck size and 5
- <u>+</u>	OUT5-	Digital output channel 5-
	1	1

Note: To apply the OUT3 or OUT4 port, the COMO port must be connected. To apply the BR+/BR- port, both the 24VO and COMO ports must connect to the external input power.

2. NPN wiring (to controllers that support valid low level input)

Fig. 6-5 NPN wiring diagram (to controllers that support valid low level input)

3. PNP wiring (to controllers that support valid low level input)

Fig. 6-6 PNP wiring diagram (to controllers that support valid low level input)

4. To connect a relay to the digital output port, do remember to connect a diode in inverse parallel, as shown in Fig. 6-7.

Fig. 6-7 Connect a relay to the digital output port (Reverse parallel connect diode)

Note: When OUT3 and OUT4 are used, COM0 must be connected.

When ports, BR+/BR-, are used, two ports, 24VB and COMB, must connect with external input.

Chapter 7 Mode Operation

7.1 Pulse Control Mode ("-4" Mode)

7.1.1 Wiring in Pulse Control Mode

1. Wiring diagram of CD2S driver in pulse control mode

Fig. 7-1 Wiring diagram of CD2S driver in pulse control mode

2.Common anode connection (to controllers that support valid low level output)

Fig. 7-3 Common anode connection (to controllers that support valid low level output)

3. Common cathode connection (to controllers that support valid high level output)

Fig. 7-4 Common cathode connection (to controllers that support valid high level output)

7.1.2 Parameters for Pulse Control Mode

1. Parameters for electronic gear ratio

Table 7-1 Parameters for electronic gear ratio

Numeric Display	Variable Name	Meaning	Default Value	Range
d3.34	Gear_Factor	Numerator of electronic gear 0 in mode -4	1000	-32767~32767
d3.35	Gear_Divider	Denominator of electronic gear 0 in mode -4	1000	1~32767

Parameters for electronic gear ratio are used to set the numerator and denominator of electronic gears when the driver operates in mode -4.

Namely: F2= $\frac{Gear_Factor}{Gear_Divider}$ * F1

If the electronic gear ratio is 1:1, 10000 pulses are inputted externally (the resolution of encoders is 2500 PPR, quadruple), and the motor turns a circle. If the electronic gear ratio is 2:1, 10000 pulses are inputted externally, and the motor turns two circles.

2. Parameters for pulse mode selection

Table 7-2 Parameters for pulse mode selection

Numeric	Variable Name	Meaning	Default	Range

Display			Value	
d3.36	PD_CW	0: Double pulse (CW/CCW) mode	1	0~2
		1. Pulse direction (P/D) mode		
		2. Incremental encoder mode		
		Note: To change this parameter, you		
		need to save it with d3.00, and restarts it		
		later.		

Note: CD series doesn't support AB phase signal. Double pulse (CW/CCW) mode (d3.36 = 0)

3. Parameters for pulse filtering coefficient

Table 7-3 Parameters for pulse filtering coefficient

Numeric	Variable	Meaning	Default	Range
Display	Name		Value	
d3.37	PD_Filter	Used to smooth the input pulses.	3	1~3276
		Filter frequency: f = $1000/(2\pi^* PD_Filter)$		7
		Time constant: T = PD_Filter/1000		
		Unit: S		
		Note: If you adjust this parameter during the operation,		
		some pulses may be lost.		

When a driver operates in the pulse control mode, if the electronic gear ratio is set too high, it is required to adjust this parameter to reduce motor oscillation; however, if the parameter adjustment is too great, motor running instructions will become slower.

4. Parameters for pulse frequency control

Table 7-4 Parameters for pulse frequency control

Numeric Display	Variable Name	Meaning	Default	Range
			Value	
d3.38	Frequency_Check	Indicates the limitation on pulse input	600	0~600
		frequency (kHz)		

5. Parameters for gain control on position loops and velocity loops

Current loops are related to motor parameters (optimal parameters of the selected motor are default for the driver and no adjusting is required).

Parameters for velocity loops and position loops should be adjusted properly according to loading conditions.

During adjustment of the control loop, ensure that the bandwidth of the velocity loop is at least twice of that of the position loop; otherwise oscillation may occur.

Numeric	Variable Name	Meaning	Default	Range
Display			Value	
d2.07	Крр	Indicates the proportional gain Kpp 0 of the	1000	0~10000
		position loop		
d2.08	K_Velocity_FF	0 indicates no feedforward, and 256 indicates	255	0~255
		100% feedforward		
d2.09	K_Acc_FF	The value is inversely proportional to the	32767	32767~10
		feedforward		
d0.05	Pc_Loop_BW	Sets the bandwidth of the position loop in Hz.	10	0~100
d2.26	Pos_Filter_N	Average filter parameter	1	1~255

Table 7-5 Parameters for gain control on position loops

Proportional gains of the position loop Kpp: If the proportional gain of the position loops increases, the bandwidth of the position loop is improved, thus reducing both the positioning time and following errors. However, too great bandwidth may cause noise or even oscillation. Therefore, this parameter must be set properly according to loading conditions. In the formula Kpp=103* Pc_Loop_BW,Pc_Loop_BW indicates the bandwidth of the position loop. The bandwidth of a position loop is less than or equal to that of a velocity loop. It is recommended that Pc_Loop_BW be less than Vc_Loop_BW /4 (Vc_Loop_BW indicates the bandwidth of a velocity loop).

Velocity feedforward of the position loop K_Velocity_FF : the velocity feedforward of a position loop can be increased to reduce position following errors. When position signals are not smooth, if the velocity feedforward of a position loop is reduced, motor oscillation during running can be reduced. Acceleration feedback of the position loop K_Acc_FF (adjustment is not recommended for this parameter): If great gains of position loops are required, the acceleration feedback K_Acc_FF can be properly adjusted to improve performance.

K_Acc_FF =
$$\frac{I_p * K_t * Encoder_R}{250000 * \sqrt{2} * J_t * \pi}$$
 Note: K_Acc_FF is inversely proportional to the acceleration

feedforward.

	l at	le 1-0 Farameters for gain control on position loops	1	1
Numeric	Variable Name	Meaning	Default	Range
Display			Value	
d2.01	Kvp	Sets the response speed of a velocity loop	1	0~3276
				7
d2.02	Kvi	Adjusts speed control so that the time of minor	1	0~1638
		errors is compensated		4
d2.05	Speed_Fb_N	You can reduce the noise during motor operation	7	0~45
		by reducing the feedback bandwidth of velocity		
		loops (smoothing feedback signals of encoders).		
		When the set bandwidth becomes smaller, the		
		motor responds slower. The formula is		
		F=Speed_Fb_N*20+100.		
		For example, to set the filter bandwidth to " $F = 500$		
		Hz", the parameter should be set to 20.		

Table 7-6 Parameters for gain control on position loops

Proportional gain of velocity loop Kvp: If the proportional gain of the velocity loop increases, the responsive bandwidth of the velocity loop also increases. The bandwidth of the velocity loop is directly proportional to the speed of response. Motor noise also increases when the velocity loop gain increases. If the gain is too great, system oscillation may occur.

Integral gain of velocity loop Kvi: If the integral gain of the velocity loop increases, the low-frequency intensity is improved, and the time for steady state adjustment is reduced; however, if the integral gain is too great, system oscillation may occur.

7.1.3 Examples of Pulse Control Mode

In the pulse control mode, follow the steps below to configure a driver:

Step 1: Confirm whether the functions of the driver require enabling through external digital input ports. To enable the driver through external digital input ports, see Table 6-12 in Example 6-3 for settings. If it is not necessary to enable the driver through external digital input ports, you can disable the enabling control function of external digital input ports by referring to Table 6-13 of Example 6-3, and enable the driver by setting its internal parameters.

Step 2: Confirm whether limit switches are required. By default, the driver operates in the limit status after being powered on. In this case, the numeric display has limit status display. If there is no limit switches,

please disable the function of limit switches by referring to Example 6-4.

Step 3: Confirm mode switching bits and operation modes by referring to the settings in Example 6-5. The factory default settings of the driver are as follows: When no signal is inputted on DIN3, the driver operates in the "-4" mode (pulse control mode).

Step 4: After function configuration on digital input ports, it is required to set parameters such as pulse modes and electronic gear ratio.

Step 5: Save parameters.

Example 7-1: Pulse control mode "-4" – enable the driver through external

digital input

Requirement: DIN1 is used for enabling the driver, DIN2 is used for error resetting, and DIN3 controls the operation modes of the driver (the mode is "-4" when no signal is inputted, and the mode is "-3" when signal is inputted). Limit switches are unavailable. The pulse form is pulse/direction, and the electronic rear ratio is 2:1. Table 7-7 describes the setup method.

Numeric	Variable Name	Meaning	Parameter Settings
Display			
d3.01	Din1_Function	Defines the functions of digital input	000.1 (Driver enable)
		port 1	
d3.02	Din2_Function	Defines the functions of digital input	000.2 (Fault reset)
		port 2	
d3.03	Din3_Function	Defines the functions of digital input	000.4 (Operation mode
		port 3	control)
d3.05	Din5_Function	Defines the functions of digital input	The default value 001.0
		port 5	changes to 000.0 (position
			positive limits are disabled)
d3.06	Din6_Function	Defines the functions of digital input	The default value 002.0
		port 6	changes to 000.0 (position
			negative limits are disabled)
d3.16	Din_Mode0	Select this operation mode when	Set to 0.004 (-4) mode
		input signals are invalid	(pulse control mode)
d3.17	Din_Mode1	Select this operation mode when	Set to 0.003 (-3) mode
		input signals are valid	(instantaneous speed mode)
d3.34	Gear_Factor	Indicates the numerator to set	Set to 2000
		electronic gears in the "-4" operation	
		mode (pulse control mode)	
d3.35	Gear_Divider	Indicates the denominator to set	Set to 1000
		electronic gears in the "-4" operation	
		mode (pulse control mode)	
d3.36	PD_CW	0: Double pulse (CW/CCW) mode	Default value is 1
		1. Pulse direction (P/D) mode	(pulse direction)
		Note: To change this parameter, you	
		need to save it with the address	

Table 7-7: Pulse control mode "-4" – enable the driver through external digital input

		"d3.00", and restarts it later.	
d3.00	Store_Loop_Data	1: Storing all configured parameters	Set to 1
		for the control loop	
		10: Initializing all parameters for the	
		control loop	

Example 7-2 Pulse control mode "-4" – enable the driver automatically after

driver power on

Requirement: The auto power-on function of the driver is enabled, DIN2 is used for error resetting, and DIN3 controls the operation modes of a driver (the mode is "-4" when no signal is inputted, and the mode is "3" when signal is inputted). Limit switches are unavailable. The pulse form is pulse/direction, and the electronic rear ratio is 1:2. Table 7-8 describes the setup method.

Numeric Display	Variable Name	Meaning	Parameter Settings
d3.01- d3.07	DinX_Function (1~7)	Defines the functions of digital input ports 1-7	None of the digital input port can be set to 000.1, that is, the Enable function is not controlled by any digital input port.
d3.02	Din2_Function	Defines the functions of digital input port 2	000.2 (Error resetting)
d3.03	Din3_Function	Defines the functions of digital input port 3	000.4 (Control on operation modes for the driver)
d3.05	Din5_Function	Defines the functions of digital input port 5	The default value 001.0 changes to 000.0 (position positive limits are disabled)
d3.06	Din6_Function	Defines the functions of digital input port 6	The default value 002.0 changes to 000.0 (position negative limits are disabled)
d3.10	Switch_On_Auto	0: No control 1:Automatically locks the motor when the driver is powered on	Set to 1
d3.16	Din_Mode0	Select this operation mode when input signals are invalid	Set to 0.004 (-4) mode (pulse control mode)
d3.17	Din_Mode1	Select this operation mode when input signals are valid	Set to 0.003 (-3) mode (instantaneous speed mode)
d3.34	Gear_Factor	Indicates the numerator to set electronic gears in the "-4" operation mode (pulse control mode)	Set to 1000
d3.35	Gear_Divider	Indicates the denominator to set electronic gears in the "-4" operation mode (pulse control mode)	Set to 2000
d3.36	PD_CW	0: Double pulse (CW/CCW) mode	Default value is 1

Table 7-8 Pulse control mode "-4" - enable driver automatically after driver power on

		1. Pulse direction (P/D) mode	(pulse direction)
		Note: To change this parameter, you	
		need to save it with the address	
		"d3.00", and restarts it later.	
d3.00	Store_Loop_Data	1: Storing all configured parameters	Set to 1
		for the control loop	
		10: Initializing all parameters for the	
		control loop	

7.2 Speed Mode ("-3" or "3" Mode)

In the instantaneous speed mode ("-3" mode), the actual speed reaches the target speed instantly. As a contrast, in the speed mode with acceleration/deceleration ("3" mode), the actual speed gradually increases until it reaches the target speed. Both the acceleration and deceleration (trapeziform shape) are configured respectively by d2.10 and d2.11. In the "3" mode, you can set Kpp to enable/disable position loops. If a position loop is enabled, speed oscillation is less than that when the loop is disabled. If Kpp is 0, it indicates that the position loop is closed.

Fig. 7-5 The speed mode "3" with acceleration/deceleration

7.2.1 Wiring in Analog – Speed Mode

Fig. 7-6 Wiring diagram of CD2S Servo in analog–speed mode

7.2.2 Parameters for Analog – Speed Mode

Numeric	Variable Name	Meaning	Default	Range
Display			Value	
d3.22	Analog1_Filter	Used to smooth the input analog signals.	5	1~127
		Filter frequency: f=4000/(2π*		
		Analog1_Filter)		
		Time Constant (T) = Analog1_Filter/4000		
		(S)		
d3.23	Analog1_Dead	Sets dead zone data for external analog	0	0~10V
		signal 1		
d3.24	Analog1_Offset	Sets offset data for external analog signal 1	0	-10~10V
d3.25	Analog2_Filter	Used to smooth the input analog signals.	5	1~127
		Filter frequency: f=4000/(2π*		
		Analog1_Filter)		
		Time Constant (T) = Analog2_Filter/4000		
		(S)		
d3.26	Analog2_Dead	Sets dead zone data for external analog	0	0~10V
		signal 2		
d3.27	Analog2_Offset	Sets offset data for external analog signal 2	0	-10~10V

Table 7-9 Parameters for analog – speed n	node
---	------

d3.28	Analog_Speed_Con	Chooses analog-speed channels	0	0~2
		0: Invalid analog channel		10~17
		1: Valid analog channel 1 (AIN1)		20~27
		2: Valid analog channel 2 (AIN2)		
		10 \sim 17: AIN1 for "Din_Speed (X-10)"		
		20 \sim 27: AIN2 for "Din_Speed (X-20)"		
		Valid in mode -3, 3 and 1.		
d3.29	Analog_Speed_Factor	Sets the proportion between analog signals	0	/
		and output speed		
d3.32	Analog_MaxT_Con	0: No control	0	0~2
		1: Max torque that Ain1 can control		
		2: Max torque that Ain2 can control		
d3.33	Analog_MaxT_Factor	Indicates the max torque factor for analog	8192	0~3276
		signal control		7

7.2.3 Analog Signal Processing

Fig. 7-8 Analog signal processing

Electrical control on internal variables is available only after ADC conversion and offset of external analog signals, and judgment of dead zone signals.

For offset processing, see the left part in Fig. 7-6; for dead zone processing, see the right part in Fig. 7-6.

7.2.4 Examples of Analog – Speed Mode

In the analog – speed mode, follow the steps below to set a driver:

Step 1: Confirm whether it is necessary to enable the driver through external digital input ports. To enable the driver through external digital input ports, see Table 6-12 in Example 6-3 for settings. If the driver does not require enabling through external digital input ports, you can disable the enabling function of external digital input ports by referring to Table 6-13 of Example 6-3, and enable the auto power-on function of the driver by setting its internal parameters.

Step 2: Confirm whether limit switches are required. By default, the driver operates in the limit status after

being powered on. In this case, the numeric display has limit status display. If limit switches are unavailable, please disable the function of limit switches by referring to Example 6-4.

Step 3: Confirm the mode switching positions and operation modes by referring to the settings in Example 6-5. The factory default settings are as follows: When no signal is inputted to DIN3, the driver operates in the "-4" mode (d3.16 = -4); when signal is inputted to DIN3, the driver operates in the "-3" mode (d3.17 = -3). If the driver is required to operate in the speed mode after being powered on, set d3.16 to -3 or 3. Step 4: After configuring functions on digital input ports, select the analog – speed channel, and set parameters such as analog – speed factors, dead zone, offset and filtering. Step 5: Save parameters.

7.3 Torque Mode ("4" Mode)

7.3.1 Wiring in Analog – Torque Mode

Fig. 7-13 Wiring diagram of CD2S Servo in analog - torque mode

7.3.2 Parameters for Analog – Torque Mode

Numeric Variable Name	Meaning	Default	Range
Display		Value	
d3.22 Analog1_Filter	Used to smooth the input analog signals. Filter frequency: f=4000/(2π* Analog1_Filter) Time Constant: τ = Analog1_Filter/4000	5	1~127

Table 7-16 Parameters for analog – torque mode

d3.23	Analog1_Dead	Sets dead zone data for external analog signal 1	0	0~10V
d3.24	Analog1_Offse t	Sets offset data for external analog signal 1	0	-10~1 0V
d3.25	Analog2_Filter	Used to smooth the input analog signals. Filter frequency: f=4000/(2π* Analog1_Filter) Time Constant (T) = Analog2_Filter/4000 (S)	5	1~127
d3.26	Analog2_Dead	Sets dead zone data for external analog signal 2	0	0~10V
d3.27	Analog2_Offse t	Sets offset data for external analog signal 2	0	-10~1 0V
d3.30	Analog_Torqu e_Con	Selects analog - torque channels 0: Invalid analog channel 1: Valid analog channel 1 (AIN1) 2: Valid analog channel 2 (AIN2) Valid mode 4	0	0~2
d3.31	Analog_Torque _Factor	Sets the proportion between analog signals and output torque (current)	0	/
d2.15	Speed_Limit_F actor	The factor that limits the maximum speed in the torque mode $\begin{cases}F_{Actual_torque} = F_{Demand_torque} - N * (V_{Actual_speed} - V_{Max_speed})$	0	/
d2.24	Max_Speed_R PM	Limits the max rotation speed of the motor	5000	0~100 00rpm

7.3.3 Analog Signal Processing

In the analog – torque mode, external analog command signals are directly inputted to the current loops in the driver, thus directly controlling target current through the internal current loop. Analog signal is processed in the same way as that in the analog – speed mode.

Table 7-17 K_t and Ipeak parameters

Motor Model	<i>K</i> ^{<i>t</i>} (Nm/A)	Driver Model	Ipeak (A)	
SMH40S-0050-30AXK-4LKH	0.265	CD412S-AA-000	12	

SMH40S-0010-30AXK-4LKH	0.265		
SMH60S-0020-30AXK-3LKX	0. 48		
SMH60S-0040-30AXK-3LKX	0. 48		
SMH80S-0075-30AXK-3LKX	0.662		15
SME60S-0020-30AXK-3LKX	0. 48	CD4225-AA-000	10
SME60S-0040-30AXK-3LKX	0. 48		
SME80S-0075-30AXK-3LKX	0.662		
SMH80S-0100-30AXK-3LKX	0.562	-	
SMH110D-0105-20AXK-4LKX	0.992		
SMH110D-0126-20AXK-4LKX	1.058	CD432S-AA-000	27.5
SMH130D-0105-20AXK-4HKX	1. 1578		
SMH130D-0157-20AXK-4HKX	1.191		
SMH110D-0126-30AXK-4HKX	1.058		
SMH110D-0157-30AXK-4HKX	0.992		
SMH110D-0188-30AXK-4HKX	1.058		
SMH130D-0105-20AXK-4HKX	1.1578	CD622S-AA-000	25
SMH130D-0157-20AXK-4HKX	1. 191		
SMH130D-0210-20AXK-4HKX	1. 3232		
SMH150D-0230-20AXK-4KHX	1.65		

7.3.4 Examples of Analog – Torque Mode

In the analog – torque mode, follow the steps below to configure a driver:

Step 1: Confirm whether it is necessary to enable the driver through external digital input ports. To enable the driver through external digital input ports, see Table 6-12 in Example 6-3 for settings. If the driver does not require enabling through external digital input ports, you can disable the enabling function of external digital input ports by referring to Table 6-13 of Example 7-3, and enable the auto power-on function of the driver by setting its internal parameters.

Step 3: Confirm mode switching positions and operation modes by referring to the settings in Example 6-5. The factory default settings for the driver are as follows: When no signal is inputted to DIN3, the driver operates in the "-4" mode (d3.16 = -4); when signal is inputted to DIN3, the driver operates in the "-3" mode (d3.17 = -3). If the driver is required to operate in the torque mode ("4" mode), please set d3.16 or d3.17 to 4. In case d3.16 = 4, if DIN3 has no input signals when the driver is powered on, the driver operates in the "4" mode. In case d3.17 = 4, if DIN3 has input signals, the driver operates in the "4" mode.

Step 3: After configuring functions on digital input ports, select the analog – torque channel, and set parameters such as analog – torque factors, dead zone, offset, filtering, speed limit factors, and max speed limits.

Step 4: Save parameters.

Numeric	Variable Name	Meaning	Parameter Settings
Display			
d3.01	Din1_Function	Defines the functions of digital input port 1	000.1 (Driver enable)
d3.02	Din2_Function	Defines the functions of digital input port 2	000.2 (Error resetting)
d3.03	Din3_Function	Defines the functions of digital input port 3	000.4 (Control over operation modes of drivers)
d3.16	Din _Mode0	Select this operation mode when input signals are invalid	Set to 0004 (4) mode (torque mode)
d3.17	Din _Mode 1	Select this operation mode when input signals are valid	Set to 0.003 (3) mode (speed mode with acceleration/deceleration)
d3.25	Analog2_Filter	Used to smooth the input analog signals. Filter frequency: f=4000/(2π* Analog1_Filter) Time Constant: T = Analog2_Filter/4000 (S)	Default value is 5
d3.26	Analog2_Dead	Sets dead zone data for external analog signal 2	Set to 0
d3.27	Analog2_Offset	Sets offset data for external analog signal 2	Set to 0
d3.31	Analog_Torque_Factor	Sets the proportion between analog signals and output torque (current)	Set to 515
d3.30	Analog_Torque_Con	Selects analog - torque channels 0: Invalid analog channel 1: Valid analog channel 1 (AIN1) 2: Valid analog channel 2 (AIN2) Valid mode 4	Set to 2
d3.00	Store_Loop_Data	1: Storing all configured parameters for the control loop	Set to 1

Table 7-18 Parameter settings in Example 7-7

10: Initializing	all	
parameters for	the	
control loop		

7.4 Internal Multi-position Control Modes ("1" Mode)

In Internal Multi-position control mode, we can activate internal set target position though an external signal to control motors. The activation has two preconditions:

1, Multi-position control mode can only be activated in Mode 1, it can't be activated in other modes.

2, At least one of the external input signal is defined as "Internal position control 0", "Internal position control 1 " or "Internal position control 2 ", which means at least one address of digital tubes-d3.01 ~ d3.07 is set to "040.0", "080.0" or "800.2.

"Internal position control 0", "Internal position control 1" and "Internal position control 2 ", these three signals will be combined into binary codes used to select a target position between "Position 0~7".

Internal position 0	Internal position 1	Internal position 2	Corresponding position	Position section numberic display	Corresponding speed	Numberic display
0	0	0	Din_Pos0	d3.40select position section sequence number d3.41select position section high bit d3.42select position section low bit	Din_Speed0_RPM	d3.18
0	0	1	Din_Pos1		Din_Speed1_RPM	d3.19
0	1	0	Din_Pos2		Din_Speed2_RPM	d3.20
0	1	1	Din_Pos3		Din_Speed3_RPM	d3.21
1	0	0	Din_Pos4		Din_Speed4_RPM	d3.44
1	0	1	Din_Pos5		Din_Speed5_RPM	d3.45
1	1	0	Din_Pos6		Din_Speed6_RPM	d3.46
1	1	1	Din_Pos7		Din_Speed7_RPM	d3.47

Table 7-20 Internal Multi-position Control Mode Parameter Table

Note: In this control mode, "position section X" can be positive or negative, it can be flexibly set; while the corresponding speed must be positive. Other parameters such as acceleration, deceleration, etc, can use the default value; also can be changed through digital tube.
Example7-8: Internal Multi-position control mode

A motor needs to go eight position sections. In position section 0, it should reach the 5000 pulse location at the speed of 100RPM.In position section 1, it should reach the 15000 pulse location at the speed of 150RPM.In position section 2, it should reach the 28500 pulse location at the speed of 175RPM.In position section 3, it should reach the -105000 pulse location at the speed of 200RPM. In position section 4, it should reach the -20680 pulse location at the speed of 300RPM. In position section 5, it should reach the -30550 pulse location at the speed of 325RPM. In position section 6, it should reach the 850 pulse location at the speed of 275RPM. In position section 7, it should reach the 15000 pulse location at the speed of 2600 pulse location at the speed of 2600 pulse location at the speed of 2600 pulse location 5, it should reach the -30550 pulse location at the speed of 325RPM. In position section 6, it should reach the 850 pulse location at the speed of 275RPM. In position section 7, it should reach the 15000 pulse location at the speed of 460RPM.

DIN1	The driver is enabled, the motor shaft is locked
DIN3	Driver working mode (invalid 1, valid-3)
DIN4	Internal position 0
DIN5	Internal position 1
DIN6	Internal position 2
DIN6:DIN5:DIN4=0:0:0	Select position and speed in section 0
DIN6:DIN5:DIN4=0:0:1	Select position and speed in section 1
DIN6:DIN5:DIN4=0:1:0	Select position and speed in section 2
DIN6:DIN5:DIN4=0:1:1	Select position and speed in section 3
DIN6:DIN5:DIN4=1:0:0	Select position and speed in section 4
DIN6:DIN5:DIN4=1:0:1	Select position and speed in section 5
DIN6:DIN5:DIN4=1:1:0	Select position and speed in section 6
DIN6:DIN5:DIN4=1:1:1	Select position and speed in section 7
DIN6	Activate command (execute the selected position section)

Table 7-21 Internal Multi-position Control Mode Demand

1. Define the meanings of the input points:

Table 7-22 Internal Multi-position Control Mode Configuration

Numberic display	Variable name	Configuration way
d3.01	Din1_Function	000.1 (Driver enabled)
d3.03	Din3_Function	000.4 (Set driver mode)
d3.04	Din4_Function	040.0 (Internal position control 0)
d3.05	Din5_Function	080.0 (Internal position control 1)
d3.06	Din6_Function	800.2 (Internal position control 2)
d3.07	Din7_Function	400.0 (Activate command)
42.16	Din mode 0	Set 0001 (1) Mode
u3.10	DIII_III0de 0	Internal Multi-position control mode
d2 17	Din mode 1	Set 0.004 (-4) Mode
u3.17		Pulse-control mode

d3.00	Storage parameters	1(Storage configuration parameters)

2. Set position and speed:

Table 7 0	امم سم معمدا د	N A IA:				Canting	
Table 7-2	3 Internal	IVILIITI-	DOSITION	and S	bbeed.	Confidu	ranon
100101 -			00010011		poou	Connigo	

Numberic display	Variable Name	Parameters Settings
d3.43	Relative / Absolute position selection	Set to 2F(absolute location)
d3.40	Multi-position control L(The range of L is 0 to 7, which presents 7 positions(0-7))	L (0~7)
d3.41	Set position M (M*10000)	Set to 0
d3.42	Set position N	Set to 5000 (set the position of section 0 t0 5000)
d3.18	Set the speed of section 0	Set to 100 (set the speed of section 0 to 100)
d3.41	Set position M (M*10000)	Set to 1
d3.42	Set position N	Set to 15000 (set the position of section 1 to 15000)
d3.19	Set the speed of position section 1	Set to 150 (set the speed of section 1 to 150)
d3.41	Set position M (M*10000)	Set to 2
d3.42	Set position N	Set to 28500 (set the position of section 2 to 28500)
d3.20	Set the speed of position section 2	Set to 175 (set the speed of section 2 to 175)
-10, 44		
03.41		Set to -1 (0.001)
d3.42	Set position N	position of section 3 to -10500)
d3.21	Set the speed of position section 3	Set to 200 (set the speed of section 3 to 200)
d3.41	Set position M (M*10000)	Set to -2 (0.002)
d3.42	Set position N	Set to -680 (0.680) (set the position of section 4 to -20680)
d3.44	Set the speed of position section 4	Set to 300 (set the speed of section 4 to 300)
d3.41	Set position M (M*10000)	Set to -3(0.003)
d3.42	Set position N	Set to -550 (0.550) (set the position of section 5 to -30550
d3.45	Set the speed of position section 5	Set to 325 (Set the speed of

		section 5 to 325)
d3.41	Set position M (M*10000)	Set to 0
d3.42	Set position N	Set to 850 (Set the position of section 6 to 850)
d3.46	Set the speed of position section 6	Set to 275 (Set the speed of section 6 to 275)
d3.41	Set position M (M*10000)	Set to 1
d3.42	Set position N	Set to 5000 (Set the position of section 7 to 15000)
d3.47	Set the speed of position section 7	Set to 460 (set the speed of section 7 to 460)
d2.10	Acceleration	Default 610 rps/s
d2.11	Deceleration	Default 610 rps/s
d3.00	Save control loop parameters	Set to 1

Set all these parameters, then:

1. Enable the driver, which means to make the digital input DIN1 high-level.

2. Select the position section, which means to change the electrical level of DIN4, DIN5 and DIN6.

3. Activate instructions and execute the program, which means to make the digital input DIN7 high-level.

Notice:

In Multi-position control mode, select location method by setting the different value of the digital tube d3.43.If you choose absolute positioning mode, set it to "F"; if the instructions require immediate updating, set it to "2F"; if you choose relative positioning method, set it to "4F".To change these parameters successfully, you have to save the value of d3.00,and then restart.

7.5 Internal Multi-speed Control Modes ("-3" or "3" Mode)

In this control mode, external input signals are used to activate the internally configured target speed to control the motor. There are two prerequisites for activation:

1. Multi-speed control is available in the "-3" or "3" mode, and is unavailable in other modes.

2. Set d3.28 to 0. In this case, the analog – speed channel is invalid.

3. At least one external input signal DinX_Function defines Bit8 or Bit9.

For example, define Din2_Function corresponding to Din2 as 010.0, and Din3_Function corresponding to Din3 as 020.0. In this way, the combination of the two above signals is used to choose any one of Din_Speed0_RPM, Din_Speed1_RPM, Din_Speed2_RPM or Din_Speed3_RPM as the target speed.

Internal	Speed	Internal	Speed	Meaning	Numeric	Valid Object
Control 0		Control 1			Display	(numeric display
(Din_Sys.Bit8)		(Din_Sys.Bit9)				operation)
0		0		Multi-speed	d3.18	
				control: 0 [rpm]		Din_Speed0_RPM
1		0		Multi-speed control	d3.19	
				1 [rpm]		Din_Speed1_RPM

Table 7-24 Parameters for internal Multi-speed control modes

0	1	Multi-speed control	d3.20	
		2 [rpm]		Din_Speed2_RPM
1	1	Multi-speed control	d3.21	
		3 [rpm]		Din_Speed3_RPM

Note: If you need to set the target speed precisely, it is required to set Din_Speed0, Din_Speed1, Din_Speed2 and Din_Speed3 with a host computer. The four data units are internal units and are suitable for users who are familiar with drivers. Din_SpeedX_RPM indicates the data after converting Din_SpeedX into the unit of rpm to facilitate users. Conversion involves both the reading and writing processes, and does not require calculation by users.

Multi-speed control (0-7) data can be controlled by external analog signal mapping. When analog signals control speed, original data of influenced speed will be covered by analog signal's value. Its setting is shown below:

Parameter	Description	Setting
d3.28	Analog signal control speed	If d3.28 is set to 10~17, Ain1 is
Analog_Speed_Con	0: Invalid	valid, which corresponds to multi
	1: Ain 1 Control Speed	speed control 0~7;
	2: Ain 2 Control Speed	If d3.28 is set to 20~27, Ain2 is
	10~17: Ain 1 control the	valid, which corresponds to multi
	"Din_Speed[x-10]"	speed control 0~7
	20~27: Ain 1 control the	
	"Din_Speed[0~20]"	
	Valid at operation mode 1, 3 or -3.	

Example 7-4: Internal Multi-speed control

Requirement: You need to define the digital input ports DIN6 and DIN7 as internal speed control, DIN1 as driver enabling and DIN2 as operation mode control of the driver (the mode is "3" when the driver is valid, and is "-3" when the driver is invalid). For detailed requirements, see Table 7-25. For the setting method, see Table 7-26.

Table 7-25 Requirements on	internal Multi-speed control
----------------------------	------------------------------

DIN6:DIN7=0:0	To execute the multi-step 1 speed (100 rpm)	
DIN6:DIN7=1:0	To execute the multi-step 2 speed (200 rpm)	
DIN6:DIN7=0:1	To execute the multi-step 3 speed (300 rpm)	
DIN6:DIN7=1:1	To execute the multi-step 3 speed (400 rpm)	
DIN1	To enable the driver, and lock the motor shaft	
DIN2	To control operation modes of the driver (the mode is "3"	
	when the driver is valid, and is "-3" when the driver is	
	invalid)	
Table 7.26 Setting methods for internal Multi-speed control		

Table 7-20 Setting methods for internal Matti-speed control		
Numeric Display	Variable Name	Setting Method
d3.01		Set to 000.1
	Din1_Function	(Driver enable)

d3.02		Set to 000.4
	Din2_Function	(control over operation modes of drivers)
d3.06		Set to 010.0
	Din6_Function	(internal speed control 0)
d3.07		Set to 020.0
	Din7_Function	(internal speed control 1)
d3.16		Set to 0.003 (3) mode
	Din_Mode0	(speed mode with acceleration/deceleration)
d3.17		Set to 0.003 (-3) mode
	Din_Mode1	(instantaneous speed mode)
d3.18	Din_Speed0_RPM	Set to 100 [rpm]
d3.19	Din_Speed1_RPM	Set to 200 [rpm]
d3.20	Din_Speed2_RPM	Set to 300 [rpm]
d3.21	Din_Speed3_RPM	Set to 400 [rpm]
d3.00	Store_Loop_Data	Set to 1

7.7 Homing Mode ("6" Mode)

1, Summary

To make a system execute positioning in accordance with its absolute positioning, the first step is to define the origin. For instance, as shown in the following XY plane, to navigate to (X, Y) = (100mm, 200mm), you must define the origin of the machine firstly. It's necessary to define the origin.

2, Procedure of homing

Use the following steps to homing:

- 1. Set the external I / O parameters, and then save.
- 2. Set the data for homing, and then save.
- 3. Execute homing.

3, Configuration of the data for homing

Here are simple descriptions of the data for executing homing.

0x607C0020	Home_Offset	Home offset	In Homing mode, set the offset relative to
			the zero point.
0x60980008	Homing_Method	Homing method	Select the homing method
0x60990120	Homing_Speed_Switch	Speed for searching	Set the speed for searching the limit
		the limit switch	switch which defined as homing signal.
0x60990220	Homing_Speed_Zero	Speed for searching	Only valid when find Index signal.
		the Zero point.	
0x60990308	Homing_Power_On	Homing when power	Every time after power on, it will start
		on	homing once.
0x609A0020	Homing_Accelaration	Homing acceleration	Control the acceleration of homing

CD has 27 methods for homing, referring the CANopen's definition of DSP402.

1st-14th methods use Z signal as homing signal.

17th-30th methods use external signal as homing signal.

Method 1: Homing on the negative limit switch and index pulse

Using this method, the initial direction of movement is leftward if the negative limit switch is inactive (here shown as low). The home position is at the first index pulse to the right of the position where the negative limit switch becomes inactive.

Method 2: Homing on the positive limit switch and index pulse

Using this method, the initial direction of movement is rightward if the positive limit switch is inactive (here shown as low). The position of home is at the first index pulse to the left of the position where the positive limit switch becomes inactive.

Methods 3 and 4: Homing on the positive home switch and index pulse

Using methods 3 or 4, the initial direction of movement is dependent on the state of the home switch. The home position is at the index pulse to either the left or right of the pint where the home switch changes state. If the initial position is sited so that the direction of movement must reverse during homing, the point at which the reversal takes place is anywhere after a change of state of the home switch.

Methods 5 and 6: Homing on the negative home switch and index pulse

Using methods 5 or 6, the initial direction of movement is dependent on the state of the home switch. The home position is at the index pulse to either the left or the right of the point where the home switch changes state. If the initial position is sited so that the direction of movement must reverse during homing, the point at which the reversal takes place is anywhere after a change of state of the home switch.

Methods 7 to 14: Homing on the home switch and index pulse

These methods use a home switch that is active over only a portion of the travel; in effect the switch has a "momentary" action as the axle position sweeps past the switch. Using methods 7 to 10, the initial direction of movement is to the right, and using methods 11 to 14, the initial direction of movement is to the left, except if the home switch is active at the start of motion. In this case, the initial direction of motion is dependent on the edge being sought. The home position is at the index pulse on either side of the rising or falling edges of the home switch, as shown in the following two diagrams. If the initial direction of movement leads away from the home switch, the drive must reverse on encountering the relevant limit switch.

Methods 15 and 16: Reserved

These methods are reserved for future expansion of the homing mode.

Methods 17 to 30: Homing without an index pulse

These methods are similar to methods 1 to 14, except that the home position is not dependent on the index pulse; it is dependent only on the relevant home or limit switch transitions. For example, methods 19 and 20 are similar to methods 3 and 4, as shown in the following diagram:

Methods 31 and 32: Reserved

These methods are reserved for future expansion of the homing mode.

Methods 33 and 34: Homing on the index

Method 35: Homing on the current position

In this method, the current position is taken to be the home position.

Methods -17 and -18: Use the mechanical terminal as reference point

negative limit

posibive limit

Example 7-5: Using method 7 for homing.

1. Set parameters.

Numberic display	Parameter Name	meaning	Setting Value
d3.01	Din1_Function		000.1 (Driver enabled)
d3.02	Din2_Function		000.2 (Driver error reset)
d3.03	Din3_Function	000.2: Driver error reset	000.4 (Driver model control)
d3.04	Din4_Function	001.0:Positive limit	200.0 (Start homing)
d3.05	Din5_Function	002.0.Negative finit	001.0 (Positive limit)
d3.06	Din6_Function		002.0 (Negative limit)
d3.07	Din7_Function		004.0 (Home signal)
d3.14	Dout4_Function	004.0:Index signal appears	004.0 (Index signal appears)
d3.15	Dout4_Function	040.0:Origin found	040.4 (origin found)
d3.16	Din_Mode0	Select this mode when the input signal is invalid	0.004 (-4)
d3.17	Din_Mode1	Select this mode when the input signal is valid	0.003 (-3)
d3.00	Store_Loop_Data	 Storage all the setting parameters except those of motor Initialize all the setting parameters except those of 	0001 (1)

		motor	
--	--	-------	--

At this time, computer software shows:

90 I/O Port				_ 🗆 🗙
Function	Simulat	e Polari	ty Real	Virtual
DIN1 driver enable	-		•	•
DIN2 fault reset	-		•	•
DIN3 operation mode	-		•	•
DIN4 Start homing	-		•	•
DIN5 positive limit	-		•	•
DIN6 negetive limit	-		•	•
DIN7 homing signal	-		•	•
Function	Si	mulate Po	olarity	Real
DOUT1 ready	····			•
DOUT2 error				•
DOUT3 position reached+	vel			•
DOUT4 index				•
DOUT5 Reference found				•

Notice: The positive and negative limits are default to normally closed point. Otherwise, the Panel will alarm and display P.L (positive limit) and N.L (No limit). Only when the alarm is eliminated, the origin control mode can be normally used.

Computer monitoring status is:

	name	data	unit
1*	Operation_Mode_Buff	-4	DEC
2*	Status_Word	4437	HEX
3*	Pos_Actual	0	inc
4×	Real_Speed_RPM	0	rpm
5*	I_q	0.000	Ap
6	Operation_Mode	-4	DEC
7	CMD_q	0.000	Ap
8	Pos_Target	0	inc
9	SpeedDemand_RPM	0	rpm
10	Control_Word	2f	HEX
11	Switch_On_Auto	0	DEC
12	CMD_q_Max	6.797	Ap

2. Set parameters for homing.

	name	data	unit
1	Home_Offset	0	inc
2	Homing_Method	7	DEC
3	Homing_Speed_Switch	150.000	rpm
4	Homing_Speed_Zero	100.000	rpm
5	Homing_Power_On	9	DEC
6	Homing_Accelaration	50.000	rps/s
7	Homing_Current	1.780	Ap

In common circumstance, only need to set up the model of origin and the rest of the parameters are default. In some case, "Electrify and then find the origin" is set to 1, at the same time the definition-- "Start finding the origin" is eliminated.

3. Start homing.

(1). Enable motor, which means the digital input point 1 is set to high-level. The computer motoring picture is shown below:

💦 I/O Port				_ 🗆 🗙
Function	Simulat	ePolari	ty Real	Virtual
DIN1 driver enable	🔳		•	•
DIN2 fault reset	🔳		•	•
DIN3 operation mode	· 🔳		•	•
DIN4 Start homing	··· 🔳		•	•
DIN5 positive limit	••• 🔳		•	•
DIN6 negetive limit	··· 🔳		•	•
DIN7 homing signal	🔳		•	•
Function	Si	mulate Po	olarity	Real
DOUT1 ready				•
DOUT2 error				•
DOUT3 position reach	ed+vel			•
DOUT4 index				•
DOUT5 position reach	ed+Ref			•

(2). Send "Start finding the origin" signal to motor, which means the digital input point 4 is set to high-level. The computer motoring picture is shown below:

ஜ I/O Port				
Function	Simulat	ePolari	ty Real	Virtual
DIN1 driver enable	-		•	•
DIN2 fault reset	-		•	•
DIN3 operation mode	•		•	•
DIN4 Start homing	-		•	•
DIN5 positive limit	-		•	•
DIN6 negetive limit	-		•	•
DIN7 homing signal	-		•	•
Function	Si	mulate Po	olarity	Real
DOUT1 ready	····			•
DOUT2 error				•
DOUT3 position reached+	vel			•
DOUT4 index				•
DOUT5 position reached+	Ref			•

Note: "Start finding the origin" signal is a pulse signal, requires only a rise, not need to always be on. If you want to start next time, a rise pulse is enough.

(4). After the external find the origin, computer monitoring picture is as follows:

隆 I/O Port				
Function	Simulat	ePolarit	y Real	Virtual
DIN1 driver enable	🔳		•	•
DIN2 fault reset	🔳		•	•
DIN3 operation mode	🔳		•	•
DIN4 Start homing			•	•
DIN5 positive limit	…		•	•
DIN6 negetive limit	🔳		•	•
DIN7 homing signal	🔳		•	•
Function	Si	mulate Po	olarity	Real
DOUT1 ready	<u> </u>			•
DOUT2 error	····			•
DOUT3 position reache	d+vel			•
DOUT4 index				•
DOUT5 position reache	d+Ref			•

(5). Driver searches the Z phase signal in mode 7, and ultimately find the origin. Computer monitoring picture is shown as follows:

🙀 I/O Port				_ 🗆 🗙
Function	Simulat	e Polarit	y Real	Virtual
DIN1 driver enable			•	•
DIN2 fault reset	••• 🔳		•	•
DIN3 operation mode	··· 🔳		•	•
DIN4 Start homing	··· 🔳		•	•
DIN5 positive limit	··· 🔳		•	•
DIN6 negetive limit	··· 🔳		•	•
DIN7 homing signal	🔳		•	•
Function	Si	mulate Po	larity	Real
DOUT1 ready				•
DOUT2 error				•
DOUT3 position reach	ed+vel			•
DOUT4 index				•
DOUT5 position reach	ed+Ref			•
J				

In mode 7, it is default to detect z phase signal after searching the origin decline along. Computer monitoring

picture is shown as follows:

😵 I/O Port				
Function	Simulat	ePolari	ty Real	Virtual
DIN1 driver enable .			•	•
DIN2 fault reset .			•	•
DIN3 operation mode .			•	•
DIN4 Start homing -			•	•
DIN5 positive limit .			•	•
DIN6 negetive limit .			•	•
DIN7 homing signal ·			•	•
Function	Si	mulate Po	olarity	Real
DOUT1 ready				•
DOUT2 error	<u> </u>			•
DOUT3 position reached	+vel			•
DOUT4 index				•
DOUT5 position reached	+Ref			•

At this point, you have completed the origin search function, then the drive position is automatically set to zero, and the current position is default to origin. Computer monitoring picture is as shown:

	name	data	unit
1*	Operation_Mode_Buff	-4	DEC
2*	Status_Word	c437	HEX
3*	Pos_Actual	6	inc
4*	Real_Speed_RPM	0	rpm
5*	I_q	0.044	Ap
6	Operation_Mode	-4	DEC
7	CMD_q	0.000	Ap
8	Pos_Target	0	inc
9	SpeedDemand_RPM	0	rpm
10	Control_Word	2f	HEX
11	Switch_On_Auto	0	DEC
12	CMD_q_Max	6.797	Ap

8.1 Driver Performance Tuning

Fig. 8-1 Schematic diagram for control loop adjustment

As shown in Fig. 8-1, a typical servo system contains three control loops, namely, a position loop, a velocity loop, and a current loop.

Current loops are related to motor parameters (optimal parameters of the selected motor are default for the driver and no adjusting is required).

Parameters for velocity loops and position loops should be adjusted properly according to loading conditions.

During adjustment of the control loop, ensure that the bandwidth of the velocity loop is at least twice of that of the position loop; otherwise oscillation may occur.

8.1.1 Manual Adjustment

1. Parameters for velocity loop

	Table 6-1 Farameters for velocity loop							
Numeric	Variable Name	Meaning	Default	Range				
Display			Value					
d2.01	Кvp	Sets the response speed of a velocity loop	-	0~32767				
d2.02	Kvi	Adjusts speed control so that the time of	-	0~16384				
		minor errors is compensated						

Table 8-1 Parameters for velocity loop

d2.05	Speed_Fb_N	Reduces the noise during motor operation	7	0~45
		by reducing the feedback bandwidth of		
		velocity loops (smoothing feedback signals		
		of encoders). When the set bandwidth		
		becomes smaller, the motor responds		
		slower.		
		The formula is F=Speed_Fb_N*20+100.		
		For example, to set the filter bandwidth to		
		"F = 500 Hz", you need to set the		
		parameter to 20.		

Proportional gain of velocity loop Kvp: If the proportional gain of the velocity loop increases, the responsive bandwidth of the velocity loop also increases. The bandwidth of the velocity loop is directly proportional to the speed of response. Motor noise also increases when the velocity loop gain increases. If the gain is too great, system oscillation may occur.

Integral gain of velocity loop Kvi: If the integral gain of the velocity loop increases, the low-frequency intensity is improved, and the time for steady state adjustment is reduced; however, if the integral gain is too great, system oscillation may occur.

Adjustment steps:

Step 1: Adjust the gain of velocity loop to calculate the bandwidth of velocity loop

Convert the load inertia of the motor into the inertia JI of the motor shaft, and then add the inertia Jr of the motor itself to obtain Jt = Jr + JI. Put the result into the formula:

Vc_Loop_BW = Kvp $*\frac{I_p * K_t * Encoder R}{J_t * 204800000 * \sqrt{2} * 2\pi}$ To calculate the bandwidth of the velocity loop

Vc_Loop_BW according to the adjusted the gain of velocity loop Kvp, only adjust Kvi according to actual

requirements.

Adjust the impact of Kvp and Kvi, as shown in Fig. 8-2.

For the effect of Kvp adjustment, see the first to the fourth from left of Fig. 8-2. Kvp gradually increases from the first to the fourth from left. The value of Kvi is 0.

For the effect of Kvi adjustment, see the first to the fourth from right of Fig. 8-2. Kvi gradually increases from the first to the fourth from right. The value of Kvp remains unchanged.

Left 2

Right 2

Left 3

Right 3

Left 4

Fig. 8-2 Schematic diagram of gain adjustment of velocity loop

Step 2: Adjust parameters for feedback filter of velocity loop

During gain adjustment of a velocity loop, if the motor noise is too great, you can properly reduce the parameter Speed_Fb_N for feedback filter of the velocity loop;

however, the bandwidth F of the feedback filter of velocity loop must be at least three times of the bandwidth

of velocity loop; otherwise oscillation may occur. The formula for calculating the bandwidth of feedback filter of velocity loop is F =Speed_Fb_N*20+100 (Hz).

2. Parameters for position loop

Numeric	Variable Name	Meaning	Default	Range
Display			Value	
d2.07	Крр	Indicates the proportional gain of the	1000	0~16384
		position loop Kpp		
d2.08	K_Velocity_FF	0 indicates no feedforward, and 255	255	0~ <mark>255</mark>
		indicates 100% feedforward		
d2.09	K_Acc_FF	The value is inversely proportional to	32767	32767~10
		the feedforward	(7FF.F)	
d0.05	Pc_Loop_BW	Sets the bandwidth of the position	10	0~100
		loops in Hz		
d2.26	Pos_Filter_N	Average filter parameter	N=1	1~255

Table 8-2 Parameters for position loop

Proportional gain of the position loop Kpp: If the proportional gain of the position loop increases, the bandwidth of the position loop is improved, thus reducing both the positioning time and following errors. However, too great bandwidth may cause noise or even oscillation. Therefore, this parameter must be set properly according to loading conditions. In the formula Kpp=103* Pc_Loop_BW, Pc_Loop_BW indicates the bandwidth of the position loop. The bandwidth of a position loop is less than or equal to that of a velocity loop. It is recommended that Pc_Loop_BW be less than Vc_Loop_BW /4 (Vc_Loop_BW indicates the bandwidth of a velocity loop).

Velocity feedforward of the position loop K_Velocity_FF: the velocity feedforward of a position loop can be increased to reduce position following errors. When position signals are not smooth, if the velocity feedforward of a position loop is reduced, motor oscillation during running can be reduced. Acceleration feedback of the position loop K_Acc_FF (adjustment is not recommended for this parameter): If great gains of position rings are required, the acceleration feedback K_Acc_FF can be properly adjusted to

improve performance. K_Acc_FF = $\frac{I_p * K_t * Encoder R}{250000 * \sqrt{2} * J_t * \pi}$ Note: K_Acc_FF is inversely proportional to the

acceleration feedforward.

Adjustment steps:

Step 1: Adjust the proportional gain of a position loop.

After adjusting the bandwidth of the velocity loop, it is recommended to adjust Kpp according to actual requirements (or directly fill in the required bandwidth in Pc_Loop_BW, and the driver will automatically calculate the corresponding Kpp). In the formula Kpp = 103*Pc_Loop_BW, the bandwidth of the position loop is less than or equal to that of the velocity loop. For a common system, Pc_Loop_BW is less than Vc_Loop_BW /2; for the CNC system, it is recommended that Pc_Loop_BW is less than Vc_Loop_BW /4. Step 2: Adjust velocity feedforward parameters of the position loop.

Velocity feedforward parameters (such as K_Velocity_FF) of the position loop are adjusted according to position errors and coupling intensities accepted by the machine. The number 0 represents 0% feedforward, and 256 represents 100% feedforward.

3. Parameters for pulse filtering coefficient

Table 8-3 Parameters for pulse filtering coefficient

Numeric	Variable	Meaning	Default	Range
Display	Name		Value	
d3.37	PD_Filter	Used to smooth the input pulses.	3	1~32767
		Filter frequency: f = $1000/(2\pi^* PD_Filter)$		
		Time constant: T = PD_Filter/1000		
		Unit: S		
		Note: If you adjust this filter parameter during the		
		operation, some pulses may be lost.		

When a driver operates in the pulse control mode, if the electronic gear ratio is set too high, this parameter must be adjusted to reduce motor oscillation; however, if the parameter adjustment is too great, motor running instructions will become slower.

8.2 Oscillation Inhibition

If resonance occurs during machine operation, you can adjust a notch filter to inhibit resonance. If resonance frequency is known, you can directly set Notch_N to (BW-100)/10. Note that you need to set Notch_On to 1 to enable the notch filter. If you do not know exactly the resonance frequency, you can firstly set the max value of d2.14 current instruction to a low one, so that the oscillation amplitude is within the acceptable range; then try to adjust Notch_N to check whether resonance disappears.

If machine resonance occurs, you can calculate the resonance frequency by observing the waveform of the target current with the oscilloscope function of the driver.

Numeric	Variable Name	Meaning	Default	Range
Display			Value	0
d2.03	Notch_N	Notch/filtering frequency setting for a velocity	45	0~90
		loop, used to set the frequency of the internal		
		notch filter, so as to eliminate the mechanical		
		resonance produced when the motor drives		
		the machine. The formula is $F = Notch_N*10 +$		
		100.		
		For example, if the mechanical resonance		
		frequency is $F = 500$ Hz, the parameter should		
		be set to 40.		
d2.04	Notch_On	Enable or disable the notch filter	0	0~1
		0: Disable the notch filter		
		1: Enable the notch filter		

Table 8-5 Parameters for oscillation inhibition

8.3 Auto reverse

In this mode, motor will run forward and reverse continuously according to the setting mode. User can set parameters in velocity loop and position loop in this mode. Please make sure auto forward/reverse is allowed in the machine before using this mode and make sure the power of driver can be cut off anytime to avoid accident.

Operation procedure for auto reverse:

- 1: Use KincoServo software to online according to chapter 7.
- 2: Set speed mode control according to 7.2.
- 3: Click the menu "Driver-Operation mode-Auto Reverse" and set the parameter for auto reverse.

Set "Auto_Reverse" as 0 for no control.

Set "Auto_Reverse" as 1 for position control.The motor will run between the position "Auto_Rev_Pos" and "Auto_Rev_Neg" .The unit is inc.The speed depends on target velocity.

Set "Auto_Reverse" as 3 for time control.The motor will run between time "Auto_Rev_Pos" and" Auto_Rev_Neg" .The unit is ms.The speed depends on target velocity.

Following figure shows the parameters need to set. In this figure, the servo will run between -10000 inc and 10000 at speed 100RPM.

Reg Basic Operate				
	name	data	unit	
1*	Operation_Mode_Buff	0	DEC	
2*	Status_Word	2f	HEX	
3*	Pos_Actual	0	inc	
4*	Real_Speed_RPM	0	rpm	
5*	Iq	0.054	Ap	
6	Operation_Mode	3	DEC	
7	CMD_q		Ap	
8	Pos_Target		inc	
9	SpeedDemand_RPM	100	rpm	
10	Control_Word	f	HEX	
😵 Aut	to Reverse		- • ×	
	name	data	unit	
1	Auto_Rev_Pos	10000	DEC	
2	Auto_Rev_Neg	-10000	DEC	
3	Auto_Reverse	1	DEC	

8.4 Debugging example

8.4.1 Oscilloscope

1. Enter oscilloscope

2. Parameters for Oscilloscope

8.4.2 Procedure for Parameter Adjustment

1. Velocity Loop Adjustment

(1) Adjust Kvp according to the load.

① Set motor running at Auto Reverse mode by position(Operation mode -3), then open oscilloscope and set the parameters to observe the curve. As shown in following figures.

② Adjust Kvp and observe the speed curve.Following figures show the different curve in different Kvp.According to the curve, it shows that the bigger value of Kvp, the faster response of speed.

(2) Adjust Kvi according to load.

(3) Adjust Speed_Fb_N to reduce system noise.

Speed_Fb_N:This parameter is used to reduce system noise.But the bigger value of this parameter,the slower response of system.

In Auto Reverse mode,Kvp=40

The oscilloscope is shown as follows:actual speed response is 33.88ms

😵 Oscilloscope				
80D. 000000		w	·····	800, 0000 CD.
-600,000000	37.5000	62.500	87.5000	-600.000000 112.5000 (m s)
Scanrate4250.0usPointer offset50Number of value500Trigger on signal	Channel 1 ☞ Speed_Demand_ 2 □ 3 ☞ Speed QEI Bac	Scale Offset • 2e2 • • 2e2 • 1e-6 • 2e2 • 1e-6	Unit Auto Cursor rpm v V C <u>0</u> - Cursor <u>1</u> - Cursor <u>1</u> - Cursor <u>2</u> - Cursor C <u>1</u> - Cursor <u>2</u> - Cursor C <u>1</u> - Cursor	or Time(us) Data(rpm) or 1 9.63 -504.0000 or 2 43.50 504.00000
Speed_QE1_Back Image: Star Image: Star	4 C Reread	▼ 1e-6 ↓ -0	Decrease u	alue 33.88 1008.0000

In Auto Reverse mode,Kvp=110

Re KincoServo		and in such that	
File Computer Driver Motor Extend View Help			
🍃 🛃 🖾 ↔ I-0 🔹 +[] +[] 🛄 🛄			
	Reverse		
Kġ I/O Port		1	
Function Simulate Polarity Real Virtual		data	unit
DIN1 driver enable 📕 🔲 🌰 🧰	1 Auto_Rev_Pos	50000	DEC
	2 Auto_Kev_Neg	-50000	DEC
DIN2 Fault reset ··· 📕 📘 🔴 🛑	3 Huto Reverse	1	DEC
	KS Poaltion Loop		
DIN3 operation mode 📕 📘 🛑 🥚	name	data	unit
	1 Крр	10.00	Hz
DIN4 P control 🛄 📕 🛡 🛡	2 K_Velocity_FF	100.00	%
	3 K_ACC_FF	32767	DEC
	4 Pos_Filter_N	1	DEC
	5 Max Following Error	10000	inc
	Kg Velocity Loop		
prwz homing signal ··· 📕 🔲 🔴 🛑	name	data	unit
	1 Kvp	110	DEC
DIN8 NULL 📕 본 🗶 🌒	2 Kvi	1	DEC
	3 Notch_N	550.00	Hz
Function Simulate Polarity Real	4 Notch_On	0	DEC
DOULT1 ready 🔳 🔲 🦲	5 Speed_Fb_N	240.000	Hz
	😵 Basic Operate		
DOUT2 NULL 📕 📃 🌒	name	data	unit
position reschedeuel	1* Operation_Mode_Buff	-3	DEC
	2* Status_Word	4437	HEX
pour Zero velocitu	3* Pos_Actual	4510	inc
	4* Real_Speed_RPM	500	rpm
	5* I_q	4	Ap
	6 Operation_Mode	-3	DEC
DOUT6 NULL 📕 📕 🌰	7 UND_q 9 Pos_Taxaat	0.000	нр
	o rus_laryet O SpoodDomand RBM	U E 0 0	THC
DOUT7 motor brake 📕 📕 🌰	10 Control Word	200 2f	гри
	11 Switch On Auto	6	DEC
	12 CMD g Max	16.691	AD

The oscilloscope is shown as follows:actual speed response is 10.00ms

2. Position Loop Adjustment

(1) Adjust Kpp.

(2)Adjust Vff (K_Velocity_FF)

Adjust Vff parameter according to the allowable position error and coupling performance of machine. Normally Vff is 100%. If system doesn't need high response for position, then this parameter can be decreased to reduce overshoot.

(3)Use oscilloscope to observe curve.

Set motor running at Auto Reverse mode by time (Operation mode 3),set parameters of oscilloscope as following figure.

In Fig.(1) and Fig.(2),Vff is 100%,When Kpp is 30,the response of position loop is faster than the one when Kpp is 10.Meanwhile the following error is also less,but overshoot is bigger.

Fig.(3),Kpp is 30,Vff is 50%.Compare with Fig.(2),the following error is bigger,but response becomes slower and there is almost no overshoot.

Internal position mode,target position is 50000 inc. Fig.(1) Kpp=10,Vff=100%

(S KINCOSCIVO							
<u>File Computer Driver Motor</u>	<u>Extend</u> <u>V</u> iew <u>H</u> e	р					
		5 mm					
💆 🔂 🖓 🕶 🖬	▝▕▝▝▋▏▝▋						
😵 I/O Port			🛛 😵 Poai	tion Loop			Ξ Σ
Function	Simulate Po	larity Real Virtual		name	data	unit	
DIN1 driver enable	···		1	Крр	10.000	Hz	
			2	K_Velocity_FF	100.000	%	
DIN2 fault reset	••• 🔳		3	K_ACC_FF	32767	DEC	
			4	Pos_Filter_N	1	DEC	
DIN3 operation mode			5	Max_Following_Error	10000	inc	
n ruu patiua command			RS Velo	city Loop			۵ ۵
DIN4 accive command		.		name	data	unit	
DINS NULL	··· 🔳		1	Кир	150	DEC	
			2	Kui	4	DEC	
DIN6 NULL	📕		3	Notch_N	550.000	Hz	
, 			4	Notch_On	0	DEC	
DIN7 homing signal	••••		5	Speed_Fb_N	240.000	Hz	
,			6	Speed_Mode	0	DEC	
DINSNULL	··· 📕		💡 Basio	: Operate			• 💽
Function	Simula	te Polarity Real		name	data	unit	
DOUT4 ready			1*	Operation Mode Buff	1	DEC	
			2*	Status_Word	5037	HEX	
DOUTS NULL			3*	Pos_Actual	14224	inc	
00012			4*	Real_Speed_RPM	474	rpm	
DOUTS POSITION REACH	ed+vel		5*	I_q	0.134	Ap	
			6	Operation_Mode	1	DEC	
DOUT4 zero velocity			7	CMD_q	0.000	Ap	
			8	Pos_Target	50000	inc	
DOUTS NULL			9	SpeedDemand_RPM	0	rpm	
			10	Control_Word	3f	HEX	
DOUT6 NULL	•••		11	Switch_On_Auto	0	DEC	
			12	UMD_q_Max	16.691	Ap	
DOUT7 motor brake			13	Profile_Speed	500.000	rpm	

The oscilloscope is as following: max. following error is 69 inc.

Fig.(2) Kpp=30,Vff=100%

😵 KincoServo				Conception Statistical Re-		
<u>File Computer Driver Motor</u>	Extend View	<u>H</u> elp				
🕒 🕞 💀 🖓 🖌	+ <mark>i</mark> →i	T				
Reg I/O Port				Poaition Loop		
Function	Simulat	ePolarityRealV	lirtual		data	
DIN1 driver enable	·			1 Kpp	30.000	Hz
J			2	2 K_Velocity_FF	100.000	%
DIN2 fault reset	··· 🔳		• 3	B K_ACC_FF	32767	DEC
			4	+ Pos_Filter_N	1	DEC
DIN3 operation mode	📃		• L	5 Max_Following_Error	10000	inc
DINH active command	· 🔲		<u> </u>	🕏 Velocity Loop		
DIN4 accive command				name	data	unit
DINS NULL	ī 🔳		• 1	Ι Κυρ	150	DEC
			_ 2	2 Kui	4	DEC
DIN6 NULL			• a	3 Notch_N	550.000	Hz
			- 4	+ Notch_On	0	DEC
DIN7 homing signal			• 5	5 Speed_Fb_N	240.000	Hz
				5 Speed_Mode	0	DEC
DINSHOLL	···· 🛄		Re Re	Basic Operate		
Function	Sir	nulate Polarity	Real	name	ctch	unit
DOUT1 ready					uaca	anic
20011			1	* Operation_Mode_Buff	1	DEC
	<u>···</u>		• 1 2	<pre>* Operation_Mode_Buff * Status_Word</pre>	1 4437	DEC
DOUT2 NULL			• 1 2 3	 * Operation_Mode_Buff * Status_Word * Pos_Actual 	1 4437 50000	DEC HEX inc
DOUT2 NULL	··· 		• 1 • 3 4	 * Operation_Mode_Buff * Status_Word * Pos_Actual * Real_Speed_RPM 	1 4437 50000 0	DEC HEX inc rpm
DOUT2 NULL	··· ··· ed+vel		• 1 • 3 • 4 • 5	 * Operation_Mode_Buff * Status_Word * Pos_Actual * Real_Speed_RPM * I_q 	1 4437 50000 0 0.121	DEC HEX inc rpm Ap
DOUT2 NULL DOUT3 position reach	 ed+ve1		• 1 • 2 3 • 3 4 • 5 • 6	 * Operation_Mode_Buff * Status_Word * Pos_Actual * Real_Speed_RPM * I_q Operation_Mode 	1 4437 50000 0 0.121 1	DEC HEX inc rpm Ap DEC
DOUT2 NULL DOUT3 position reach DOUT4 zero velocity			• 1 2 3 4 • 5 6 • 7	 * Operation_Mode_Buff * Status_Word * Pos_Actual * Real_Speed_RPM * I_q Operation_Mode CMD_q Pos_Taynet 	1 4437 50000 0 0.121 1 8.090 5000	DEC HEX inc rpm Ap DEC Ap
DOUT2 NULL DOUT3 Position reach DOUT4 zero velocity	ed+ve1		• 1 2 3 4 4 • 5 6 6 • 7 8	 * Operation_Mode_Buff * Status_Word * Pos_Actual * Real_Speed_RPM * I_q Operation_Mode CMD_q Pos_Target SpeedDemand_RPM 	1 4437 50000 0 0.121 1 0.000 50000 9	DEC HEX inc rpm Ap DEC Ap inc rpm
DOUT2 NULL DOUT3 Position reach DOUT4 Zero velocity DOUT5 NULL	ed+ve1		 1 2 3 4 5 6 7 8 9 9 1 	 * Operation_Mode_Buff * Status_Word * Pos_Actual * Real_Speed_RPM * I_q Operation_Mode CMD_q Pos_Target SpeedDemand_RPM 6 Control Word 	1 1 4437 50000 0 0.121 1 0.990 50000 0 3f	DEC HEX inc rpm Ap DEC Ap inc rpm HEX
DOUT2 NULL DOUT3 Position reach DOUT4 Zero velocity DOUT5 NULL	 ed+ve1 		 1 2 3 4 5 6 7 8 9 1 	 * Operation_Mode_Buff * Status_Word * Pos_Actual * Real_Speed_RPM * I_q Operation_Mode CMD_q * Pos_Target SpeedDemand_RPM 6 Control_Word 1 Switch On Auto 	1 1 4437 50000 0 0 0 1 1 0.090 50000 0 50000 0 3f 0	DEC HEX inc rpm Ap DEC Ap inc rpm HEX DEC
DOUT2 NULL DOUT3 position reach DOUT4 zero velocity DOUT5 NULL DOUT6 NULL	ed+ve1		 1 2 3 4 5 6 7 8 9 1 1 	 * Operation_Mode_Buff * Status_Word * Pos_Actual * Real_Speed_RPM * I_q Operation_Mode CMD_q * Pos_Target SpeedDemand_RPM 6 Control_Word 1 Switch_On_Auto 2 CMD q Max 	1 1 4437 50000 0 0 0 1 1 0.000 50000 0 50000 0 3f 0 16.691	DEC HEX inc rpm Ap DEC Ap inc rpm HEX DEC Ap
DOUT2 NULL DOUT3 position reach DOUT4 zero velocity DOUT5 NULL DOUT6 NULL DOUT6 NULL	··· ··· ··· ··· ···		 1 2 3 4 5 6 7 7 8 9 1 1 1 	 * Operation_Mode_Buff * Status_Word * Pos_Actual * Real_Speed_RPM * I_q Operation_Mode CMD_q * Pos_Target SpeedDemand_RPM © Control_Word 1 Switch_On_Auto 2 CMD_q_Max 3 Profile_Speed 	1 1 4437 50000 0 0 0.121 1 0.000 50000 0 3f 0 3f 0 16.691 500.000	DEC HEX inc rpm Ap DEC Ap inc rpm HEX DEC Ap rpm
DOUT2 NULL DOUT3 position reach DOUT4 zero velocity DOUT5 NULL DOUT6 NULL DOUT7 notor brake	··· ··· ··· ··· ···		 1 2 3 4 5 6 7 7 9 1 1 1 	 * Operation_Mode_Buff * Status_Word * Pos_Actual * Real_Speed_RPM * I_q Operation_Mode CMD_q Pos_Target SpeedDemand_RPM © Control_Word Switch_On_Auto CMD_q Max Profile_Speed 	1 4437 50000 0 0.121 1 8.000 50000 0 3f 0 16.691 500.000	DEC HEX inc rpm Ap DEC Ap inc rpm HEX DEC Ap rpm

The oscilloscope is as following:max. following error is 53 inc.

Fig.(3) Kpp=30,Vff=50%

g KincoServo				
<u>File Computer Driver Motor Extend View H</u> elp				
🕞 🔚 🚰 🚭 I=0 ● +ii +ii 🛅 🗂				
😵 I/O Port 📃 📼 💌	🛛 🕅 🨵 Poa	aition Loop		
Function Simulate Polarity Real Virtual		name	data	unit
DIN1 driver enable 🛛 🔲 🛑 😑	1	Крр	30.000	Hz
	2	K_Velocity_FF	50	%
DIN2 fault reset 🛛 📕 📘 🛑 🛑	3	K_ACC_FF	32767	DEC
	4	Pos_Filter_N	1	DEC
DIN3 operation mode 📘 📃 💭 🧶	5	Max_Following_Error	10000	inc
DIAN Setius command	😵 Velo	ocity Loop		
		name	data	unit
DINS NULL 📕 📘 🌒 🖤	1	Кор	150	DEC
	2	Kui	4	DEC
DIN6 NULL 📕 📘 🔍 💭	3	Notch_N	550.000	Hz
	4	Notch_On	0	DEC
DIN7 homing signal ••• 📕 📘 🔍 🖤	5	Speed_Fb_N	240.000	Hz
	6	Speed_Mode	0	DEC
	😵 Basi	ic Operate		
Function Simulate Polarity Real		name	data	unit
роцти ready 🔳 🔲 👝	1*	Operation_Mode_Buff	1	DEC
	2*	Status_Word	5037	HEX
рошта NULL 🔳 🔲 🌰	3*	Pos_Actual	8826	inc
	4*	Real_Speed_RPM	2	rpm
DOUTS POSITION REACHEd+vel 📕 🛑	5*	I_q	0.000	Ap
	6	Operation_Mode	1	DEC
рошть zero velocity 🛛 📕 🦲	7	CMD_q	0.000	Ap
	8	Pos_Target	50000	inc
DOUTS NULL 📕 📃 🌰	9	SpeedDemand_RPM	0	rpm
	10	Control_Word	3f	HEX
DOUT6 NULL 📕 🗖 🌰	11	Switch_On_Auto	0	DEC
	12	CMD_q_Max	16.691	Ap
DOUT7 motor brake 🧧 📘 👝	13	Profile_Speed	500.000	rpm

The oscilloscope is as following:max. following error is 230 inc.

Chapter 9 Communication

A CD2S servo driver has the RS232 communication interface, which directly controls the working of the servo driver with the operation software of a host computer. If the servo driver needs to communicate with a Programmable Logic Controller (PLC) or other controllers via the free RS485 communication interface, an RS232 to RS485 converter should be added on the driver side.

Fig. 9-1 Communication cables between a PC and a CD2S servo driver

9.1 Transport Protocol

The RS-232C communication of the CD2S servo driver strictly follows a master/slave protocol. The host computer can send any data to CD2S driver. The driver configured with ID No. will calculate such data and return a reply. Default communication settings for the CD2S servo driver are as follows:

Baud rate = 38400 bps

Data bits = 8

Stop bits = 1

No parity check

The baud rate can be changed by setting d5.02, after changing the value, it is necessary to set d2.00 or d3.00 to save it and reboot the system so that it will take effect.

The transport protocol used by the RS-232 uses a data packet with fixed length of 10 bytes.

byte 0	byte 9	
ID	8 byte data	СНКЅ

ID is the ID No. of the slave

CHKS =-SUM(byte0,...,byte8), CHKS is the last two digits of the calculation result.

The host sends:

byte 0		byte 9
ID	8 byte host data	CHKS

The slave sends/The host receives:

byte 0		byte 9	
ID	8 byte slave data	СНКЗ	

Note: Each 10-byte packet has its own CHKS.

If the host sends an ID not existed in the network to the CD2S servo driver, no CD2S servo driver will make a reply. After the host sends the data correctly, the slave will find the data packets in compliance with its own ID and check the CHKS value. If the checksum does not match, the slave will not make a response.

9.2 Data Protocol

A data protocol is different from a transport protocol. It contains 8 bytes of all 10 bytes of the above RS-232. Definition of CD2S servo driver internal data complies with the CANopen international standard. All parameters, values and functions are expressed by index and subindex.

9.2.1 Download(from Host to Slave)

Download refers to that the host sends a command to write values into the objects in the slave, and the host generates an error message when the value is downloaded to a non-existent object. The host sends:

byte 0	byte 1	byte 2	byte 3	byte 4	byte 5	byte 6	byte 7
--------	--------	--------	--------	--------	--------	--------	--------

CMD INDEX	SUB INDEX	DATA	
-----------	--------------	------	--

CMD Specifies the direction of data transfer and the volume of data.

23(0x16) Sends 4-byte data (bytes 4...7 contain 32 bits)

2b(0x16) Sends 2-byte data (bytes 4, 5 contain 16 bits)

2f(0x16) Sends 1-byte data (bytes 4 contains 8 bits)

INDEX Index in the object dictionary where data should be sent

SUB INDEX Subindex in object dictionary where data should be sent

In all four bytes in data, the lower-order bits are arranged before the higher-order bits. To write 600 RPM into "Target Velocity" in the slave, the unit of 2FF00910 is rpm, 600 is in decimal system, and 258 is in hexadecimal system.Since the length of the object to be written is 4 bytes and the calculation result 02 58 has only 2 bytes,zero shall be filled to the higher-order bits. Therefore, the final result = 00 00 02 58.

DATA: byte4=58,byte5=02,byte6=00,byte7=00

The slave answers:

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

RES	INDEX	SUB INDEX	RESERVED	
-----	-------	--------------	----------	--

RES: Displays slave response:

60(0x16) Data successfully sent

80(0x16) Error, bytes 4...7 contain error cause

INDEX 16-bit value, same as that sent by the master

SUBINDEX 8-bit value, same as that sent by the master

RES Reserved for future use

9.2.2 Upload(From Slave to Host)

Upload refers to that the master sends a command to read object address in the slave and the master will generate an error if a non-existent target address is uploaded.

The master sends:

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

CMD	IND	EX	SUB INDEX		RES	ERVED			
CMD Specifies the direction of data transfer 40(0x16)									
INDEX 16-bit value									
SUBINE	DEX 8-	bit subii	ndex						
RESER	VED By	/tes 4…	7 not us	sed					
The slav	ve recei	ves:							
byte 0	byte 1	byte 2	byte 3	byte 4	byte 5	byte 6	byte 7		
RES	IND	EX	SUB INDEX		D	٩ΤΑ			
RES	RES Displays slave response:								
43(0x16	s) by	rtes 4	7 contaii	n 32-bit	data				

4B(0x16) bytes 4, 5 contain 16-bit data

4F(0x16) byte 4 contains 8-bit data

80(0x16) error, bytes 4...7 contain error cause

INDEX 16-bit value, same as that sent by the master

SUBINDEX 8-bit value, same as that sent by the master

If the data contains no error, byte 4...byte 7 save the object value read from the slave, with the lower-order bits arranged before the higher-order bits. Correct value = byte7, byte6, byte5, byte4. If there is an error, data contained in these four types is no longer object values read from the slave.

For example:

The master sends a "upload" command to the slave:

01 40 F0 2F 09 58 02 00 00 3D (This command reads target velocity 2FF00910 from the slave)

The slave answers:

01 4B F0 2F 09 58 02 00 00 32

Indicates: 01—Slave index is 1. 4B – Received data contains 2 bytes, saved to byte 4…byte 5 in the 10 bytes of the response. byte4=58, byte5=02, byte6=00, byte7=00. Then, DATA= byte7 byte6 byte5 byte4 = 0258(hex)= 600 rpm

Example 9-1: Use home mode/position mode/speed mode by communication

Home mode (Controlword F to 1F)									
CANOpen	Name	Value	Message (ID=1)	Meaning					
60400010	Controlword	F	01 2B 40 60 00 0F 00 00 00 25	Homing_Speed_Swit					
60600008	Operation_mode	6	01 2F 60 60 00 06 00 00 00 0A	ch and					

60980008	Homing_Metho d	33	01 2F 98 60 00 21 00 00 00 B7	Homing_Speed_Zero					
60990120	Homing_Speed_ Switch	200RPM	01 23 99 60 01 55 55 08 00 30	DEC=[(RPM*512*E					
60990220	Homing_Speed_ Zero	150RPM	01 23 99 60 02 00 40 06 00 9B	ncoder resolution)/1875]					
60400010	Controlword	1F	01 2B 40 60 00 1F 00 00 00 15						
01 40 41 60 0	0 00 00 00 00 1ERead	l state word, C	2037means home found						
Position mode positioning)	e (Controlword Abso	lute positioning	g 2F to 3F Relative positioning 4F	to 5F, 103F Start absolute					
CANOpen	Name	Value	Message (ID=1)	Meaning					
60400010	Controlword	F	01 2B 40 60 00 0F 00 00 00 25	DEC=[(RPM*512*Enco					
60600008	Operation_mode	1	01 2F 60 60 00 01 00 00 00 0F						
607A0020	Target_Position	50000inc	01 23 7A 60 00 50 C3 00 00 EF	der resolution)/1875]					
60810020	Profile_Speed	200RPM	01 23 81 60 00 55 55 08 00 49	-					
60830020	Profile_Acc	610.352rps/s	Default						
60840020	Profile_Dec	610.352rps/s	Default						
		2F	01 2B 40 60 00 2F 00 00 00 05						
		3F(Absolute positioning)	01 2B 40 60 00 3F 00 00 00 F5	DEC=[(RPS/S*					
60400010	Controlword	4F	01 2B 40 60 00 4F 00 00 00 E5	resolution)/1000/4000]					
		5F(Relative positioning)	01 2B 40 60 00 5F 00 00 00 D5	1					
01 40 41 60 00 00 00 00 1E Read state word , D437 means position to									

Speed mode				
CANOpen	Name	Value	Message (ID=1)	Meaning
60600008	Operation_Mode	3	01 2F 60 60 00 03 00 00 00 0D	Default unit of Target
60FF0020	Target_Speed	150RPM	01 23 FF 60 00 00 40 06 00 37	speed
60400010	Controlword	F	01 2B 40 60 00 0F 00 00 00 25	DEC
60830020	Profile_Acc	610.352 rps/s	Default	DEC , DEC=[(RPM*512*Enc

60840020		610.352 rps/s		oder Resolution)/1875] Default unit of Profile acc/dec
	Profile_Dex		Default	DEC ,
				DEC=[(RPS/S*65536*
				Encoder
				Resolution)/1000/
				4000]

Note: Under communication mode, data are transmitted in HEX.

Chapter 10 Troubleshooting

10.1 Alarm Messages

Digital flickering on the display indicates that an alarm occurs indicating that the driver is faulty. For details about faults, see Table 10-1 "Fault codes". A code of the alarm message is represented by a hexadecimal data, and four numeric displays appear. If the driver is faulty, the corresponding bits in the alarm codes are set to "1". For example, if an encoder is not connected, the 1st and 2nd bits of the faulty code are set to "1". As a result, "0006" is displayed.

1 st bit (left)	in nur	meric d	isplay	2 nd bi	t in nun	neric di	splay	3 rd bit	in num	neric dis	splay	4 th bit (right)	in nun	neric d	isplay
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EEPROM Error	Commutation	Reserved	Over Frequency	Ilt Error	Logic Voltage	Following Error	Chop Resistor	Over Current	Low Voltage	Over Voltage	Over Temperature	Encoder Counting	Encoder UVW	Encoder ABZ	Internal

Table	10-1	Fault	codes
Table	10-1	i aun	COUES

A maximum of 7 generated alarms can be stored in the driver. For details, enter the menu of Group F007. Press **Enter**. The interface of faulty codes is displayed. The errors that you first discovered are those that have occurred most recently. Press \blacktriangle or \checkmark to browse the messages of historical alarms. If the decimal point at the lower right corner in the second bit of the numeric display is on, it indicates that the earliest alarm message is just browsed; if the decimal point at the lower right corner in the third bit of the numeric display is on, it indicates that the latest alarm message is just browsed.

For details on error messages, you need to access PC software via a communication port to check the working status of the driver when an error occurs. Here are some messages of the driver for your reference:

- 1. Error codes;
- 2. Bus voltage when an error occurs;
- 3. Motor speed when an error occurs;
- 4. Motor current when an error occurs;
- 5. Driver temperature when an error occurs;
- 6. Working mode of the driver when an error occurs;
- 7. Accumulated working time of the driver when an error occurs;
- 8. Whether the current loop works when an error occurs; [0x0000 indicates that the power tube does not work, and 0x0077 indicates that the power tube is working]
10.2 Alarm Causes & Troubleshooting

Alarm code	Alarm Information	Alarm Cause	Troubleshooting		
FFF.F /800.0	No motor configured	There is no motor type set in servo driver	Set the motor type in d4.01.		
000.1	Internal	Internal problem	Please contact manufacturer		
000.2	Encoder ABZ	The ABZ signal cable is disconnected.	Check the cable.		
000.4	Encoder UVW	The UVW signal cable is disconnected.	Check the cable.		
000.8	Encoder Counting	Interferences are suppressed. Encoder cable problem	Check encoder cable. Remove interference(Such as connect the motor cable to SHIELD terminal etc.)		
000.6	Encoder Error	ABZ and UVW signals of the encoders incur error simultaneously.	Check the cable.		
001.0	Over Temperature	The driver temperature exceeds 83°C.	Check whether the selected driver has enough power.		
002.0	Over Voltage	The bus voltage of the driver exceeds the allowable range.	Check the input voltage,or determine whether a braking resistor is connected.		
004.0	Low Voltage	The voltage of the driver bus is below the allowable range.	Check the input power. Power on AC first,then power DC. Reduce deceleration.		
008.0	Over Current	The power tube in the driver is faulty, or short circuit occurs on the phase line of the motor.	Check motor wires. If the motor works properly, it can be judged that faults occur on the power tube in the driver.		
010.0	Chop Resistor	The actual power of brake resistor is larger than rated power	Change brake resistor.		
020.0	Following Error	Control loop parameters setting problem. Overload or block. Encoder signal problem.	Set VFF (d2.08) as 100%,increase kpp(d2.07) and kvp(d2.01). Choose bigger power motor or check whether the load is blocked. Check the encoder cable.		
040.0	Logic Voltage	The logic voltage is lower than 18V.	Check the logic power supply 24V.		
080.0	Ilt Error	Control loop parameters setting problem. Overload or block.	Increase kvp(d2.01). Choose bigger power motor or check whether the load is blocked.		
100.0	Over Frequency	The input pulse frequency exceeds the allowable maximum value.	Check the input pulse frequency and the maximum permissible value of the frequency. (d3.38) 。		
200.0	STO Error	STO Error	Check the wiring according to		

			Chapter 3.4.	
400.0	Commutation	UVW signal of encoder cable problem	Check encoder cable.	
	EEPROM Error	Because of updating firmware.	Initialize all control parameters and	
800.0		Driver internal problem.	save, then restart driver.	
			Contact manufacturer.	
000 0	Driver abnormal working	Logic power supply problem.	Check 24VDC power supply.	
000.8	states	Driver internal problem.	Contact manufacturer.	

Chapter11 Appendix

Appendix 1: Selection Table for Brake Resistor

	Driver Power[W]	Brake Resistor[Ω]			Deales	Brake	Brake
Driver Model		Min.	Max.	Ref.	Brake Resistor Model(Ref.)	Resistor Power[W] (Ref.)	Resistor Withstand Voltage[VDC] (Min.)
CD 400 AA 000	200W	39	100	75	T-75R-100	100	500
CD420-AA-000 CD422-AA-000	400W						
CD 122 MA 000	750W						
CD 420 AA 000	1.OKW						500
CD430-AA-000	1.05KW	27	51	39	T-39R-200	200	
CD432 MI 000	1.26KW						
	1.26KW	47	150	75	T-75R-200		800
CD620-AA-000	1.57KW						
CD622-AA-000	1.88KW	47					
	2.1kw						

			2.3kw						
--	--	--	-------	--	--	--	--	--	--

Note:Please set brake resistor value and power in d5.04 and d5.05 when using brake resistor. Please select brake resistor power according to real application.

Appendix 2:Selection Table for Fuse

Driver Model	Driver Power[W]	Specification
	200W	3.5A/250VAC
CD420-AA-000 CD422-AA-000	400W	7A/250VAC
CD422 MA 000	750W	15A/250VAC
	1000W	20A/250VAC
CD430-AA-000	1.05KW	20A/250VAC
CD432 AA 000	1.26KW	25A/250VAC
	1.26KW	
	1.57KW	15A/ 500VAC
CD620-AA-000	1.88KW	20A/500VAC
CD022 AA 000	2.1KW	
	2. 3KW	23A/250VAC

Motion Control Products Ltd 11-15 Francis Avenue, Bournemouth, Dorset, UK, BH11 8NX Tel.: +44 (0)1202 599922 enquiries@motioncontrolproducts.com www.motioncontrolproducts.com